scholarly journals Measurement of the branching ratio for theβdecay ofO14

2015 ◽  
Vol 92 (6) ◽  
Author(s):  
P. A. Voytas ◽  
E. A. George ◽  
G. W. Severin ◽  
L. Zhan ◽  
L. D. Knutson
Keyword(s):  
2021 ◽  
Author(s):  
Bin Zhao ◽  
Shanyu Han ◽  
Christopher L. Malbon ◽  
Uwe Manthe ◽  
David. R. Yarkony ◽  
...  

AbstractThe Born–Oppenheimer approximation, assuming separable nuclear and electronic motion, is widely adopted for characterizing chemical reactions in a single electronic state. However, the breakdown of the Born–Oppenheimer approximation is omnipresent in chemistry, and a detailed understanding of the non-adiabatic dynamics is still incomplete. Here we investigate the non-adiabatic quenching of electronically excited OH(A2Σ+) molecules by H2 molecules using full-dimensional quantum dynamics calculations for zero total nuclear angular momentum using a high-quality diabatic-potential-energy matrix. Good agreement with experimental observations is found for the OH(X2Π) ro-vibrational distribution, and the non-adiabatic dynamics are shown to be controlled by stereodynamics, namely the relative orientation of the two reactants. The uncovering of a major (in)elastic channel, neglected in a previous analysis but confirmed by a recent experiment, resolves a long-standing experiment–theory disagreement concerning the branching ratio of the two electronic quenching channels.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


2007 ◽  
Vol 22 (18) ◽  
pp. 1319-1328 ◽  
Author(s):  
ASHUTOSH KUMAR ALOK ◽  
S. UMA SANKAR

We consider the effect of new physics on the branching ratio of Bs → l+l-γ where l = e, μ. If the new physics is of the form scalar/pseudoscalar, then it makes no contribution to Bs → l+l-γ, unlike in the case of Bs → l+l-, where it can potentially make a very large contribution. If the new physics is in the form of vector/axial-vector operators, then the present data on B → (K, K*) l+l- does not allow a large enhancement for B(Bs → l+l- γ). If the new physics is in the form of tensor/pseudotensor operators, then the data on B → (K, K*) l+l- gives no useful constraint but the data on B → K* γ does. Here again, a large enhancement of B(Bs → l+l-γ), much beyond the Standard Model expectation, is not possible. Hence, we conclude that the present data on b → s transitions allow a large boost in B(Bs → l+l-) but not in B(Bs → l+l-γ).


2019 ◽  
Vol 100 (3) ◽  
Author(s):  
E. Abouzaid ◽  
M. Arenton ◽  
A. R. Barker ◽  
L. Bellantoni ◽  
E. Blucher ◽  
...  
Keyword(s):  

2019 ◽  
Vol 218 ◽  
pp. 02012
Author(s):  
Graziano Venanzoni

I will report on the recent measurement of the fine structure constant below 1 GeV with the KLOE detector. It represents the first measurement of the running of α(s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s), which is the strongest direct evidence both in time-and space-like regions achieved in a single measurement. From a fit of the real part of Δα(s) and assuming the lepton universality the branching ratio BR(ω → µ+µ−) = (6.6 ± 1.4stat ± 1.7syst) · 10−5 has been determined


2019 ◽  
Vol 214 ◽  
pp. 01037
Author(s):  
Marco Boretto

The aim of the NA62 experiment is to study the extreme rare kaon decay K+ ? π+vv and to measure its branching ratio with a 10% accuracy. In order to do so, a very high intensity beam from the CERN SPS is used to produce charged kaons whose decay products are detected by many detectors installed along a 60 m decay region. The NA62 Data Acquisition system (DAQ) exploits a multi-level trigger system; following a Level0 (L0) trigger decision, 1 MHz data rate from about 60 sources is read by a PC-farm, the partial event is built and then passed through a series of Level1 (L1) algorithms to further reduce the trigger rate. Events passing this level are completed with the missing, larger, data sources (~400 sources) at the rate of 100 KHz. The DAQ is built around a high performance ethernet network interconnecting the detectors to a farm of 30 servers. After an overall description of the system design and the main implementation choices that allowed to reach the required performance and functionality, this paper describes the overall behaviour of the DAQ in the 2017 data taking period. It then concludes with an outlook of possible improvements and upgrades that may be applied to the system in the future.


Sign in / Sign up

Export Citation Format

Share Document