scholarly journals Erratum: Linear Boltzmann transport for jet propagation in the quark-gluon plasma: Elastic processes and medium recoil [Phys. Rev. C 91 , 054908 (2015)]

2018 ◽  
Vol 97 (1) ◽  
Author(s):  
Yayun He ◽  
Tan Luo ◽  
Xin-Nian Wang ◽  
Yan Zhu
1997 ◽  
Vol 12 (28) ◽  
pp. 5151-5160 ◽  
Author(s):  
Jan-E Alam ◽  
Pradip Roy ◽  
Sourav Sarkar ◽  
Sibaji Raha ◽  
Bikash Sinha

We apply the momentum integrated Boltzmann transport equation to study the time evolution of various quark flavors in the central region of ultrarelativistic heavy ion collisions. The effects of thermal masses for quarks and gluons are incorporated to take into account the in-medium properties of these ingredients of the putative quark gluon plasma. We find that even under very optimistic conditions, complete chemical equilibration in the quark gluon plasma appears unlikely.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaojun Yao ◽  
Weiyao Ke ◽  
Yingru Xu ◽  
Steffen A. Bass ◽  
Berndt Müller

Abstract We develop a framework of coupled transport equations for open heavy flavor and quarkonium states, in order to describe their transport inside the quark-gluon plasma. Our framework is capable of studying simultaneously both open and hidden heavy flavor observables in heavy-ion collision experiments and can account for both, uncorrelated and correlated recombination. Our recombination implementation depends on real-time open heavy quark and antiquark distributions. We carry out consistency tests to show how the interplay among open heavy flavor transport, quarkonium dissociation and recombination drives the system to equilibrium. We then apply our framework to study bottomonium production in heavy-ion collisions. We include ϒ(1S), ϒ(2S), ϒ(3S), χb(1P) and χb(2P) in the framework and take feed-down contributions during the hadronic gas stage into account. Cold nuclear matter effects are included by using nuclear parton distribution functions for the initial primordial heavy flavor production. A calibrated 2 + 1 dimensional viscous hydrodynamics is used to describe the bulk QCD medium. We calculate both the nuclear modification factor RAA of all bottomonia states and the azimuthal angular anisotropy coefficient v2 of the ϒ(1S) state and find that our results agree reasonably with experimental measurements. Our calculations indicate that correlated cross-talk recombination is an important production mechanism of bottomonium in current heavy-ion experiments. The importance of correlated recombination can be tested experimentally by measuring the ratio of RAA(χb(1P)) and RAA(ϒ(2S)).


2001 ◽  
Vol 16 (08) ◽  
pp. 531-540 ◽  
Author(s):  
K. OKANO

Within the closed-time-path formalism of nonequilibrium QCD, we derive a Slavnov–Taylor (ST) identity for the gluon polarization tensor. The ST identity takes the same form in both Coulomb and covariant gauges. Application to quasi-uniform quark–gluon plasma (QGP) near equilibrium or nonequilibrium quasistationary QGP is made.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
David Blaschke ◽  
Kirill A. Devyatyarov ◽  
Olaf Kaczmarek

In this work, we present a unified approach to the thermodynamics of hadron–quark–gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth–Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark–gluon plasma takes place in the narrow temperature interval of 150–190 MeV, where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD. We suggest a Polyakov-loop quark–gluon plasma model with O(αs) virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. Blanco ◽  
K. Kutak ◽  
W. Płaczek ◽  
M. Rohrmoser ◽  
R. Straka

Abstract We study evolution equations describing jet propagation through quark-gluon plasma (QGP). In particular we investigate the contribution of momentum transfer during branching and find that such a contribution is sizeable. Furthermore, we study various approximations, such as the Gaussian approximation and the diffusive approximation to the jet-broadening term. We notice that in order to reproduce the BDIM equation (without the momentum transfer in the branching) the diffusive approximation requires a very large value of the jet-quenching parameter $$ \hat{q} $$ q ̂ .


Sign in / Sign up

Export Citation Format

Share Document