scholarly journals Charged pion condensation and duality in dense and hot chirally and isospin asymmetric quark matter in the framework of the NJL2 model

2019 ◽  
Vol 100 (3) ◽  
Author(s):  
T. G. Khunjua ◽  
K. G. Klimenko ◽  
R. N. Zhokhov

Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 778 ◽  
Author(s):  
Tamaz Khunjua ◽  
Konstantin Klimenko ◽  
Roman Zhokhov

In this short review we tried to give an outline of investigations of charged pion condensation (PC) in dense baryonic (quark) matter in the framework of effective Nambu–Jona-Lasinio (NJL)-type models. The possibility of charged PC phase in dense quark matter with isospin asymmetry is investigated. First, it is demonstrated that this phase can be realized in the framework of massless NJL model. However, the existence of this phase is enormously fragile to the values of current quark mass and we show that charged PC phase is forbidden in electrically neutral dense quark matter with β -equilibrium when current quark masses are close to their physical value of 5.5 MeV. Nevertheless, then it is shown that in real physical systems there could be conditions promoting the appearance of charged PC phenomenon in dense quark matter; specifically, it was shown that if one takes into consideration the fact that system can have finite size, then a dense charged PC phase can be realized there. It was also demonstrated that the possibility of inhomogeneous pion condensate might allow this phase to appear. In addition, more recently it was revealed that there is another interesting factor that can induce a charged PC phase in dense quark matter even without isospin imbalance. It is a chiral imbalance of the system (non-zero difference between densities of left- and right-handed quarks). These results can be interesting in heavy ion collision experiments, where it is expected to get high baryon densities. It is of interest also in the context of neutron stars, where quark matter might be realized in the core and very high baryon and isospin densities are attained.



2017 ◽  
Vol 95 (10) ◽  
Author(s):  
T. G. Khunjua ◽  
K. G. Klimenko ◽  
R. N. Zhokhov ◽  
V. C. Zhukovsky


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
T. G. Khunjua ◽  
K. G. Klimenko ◽  
R. N. Zhokhov

AbstractThe phase diagram of dense quark matter with chiral imbalance is considered with the conditions of electric neutrality and $$\beta $$ β -equilibrium. It has been shown recently that chiral imbalance can generate charged pion condensation (PC) in dense quark matter. It was, therefore, interesting to verify that this phenomenon takes place in realistic physical scenarios such as electrically neutral quark matter in $$\beta $$ β -equilibrium, because a window of charged PC at dense quark matter phase diagram (without chiral imbalance) predicted earlier was closed by the consideration of these conditions at the physical current quark mass. In this paper it has been shown that the charged PC phenomenon is generated by chiral imbalance in the dense electric neutral quark/baryonic matter in $$\beta $$ β -equilibrium, i.e. matter in neutron stars. It has also been demonstrated that charged PC is an inevitable phenomenon in dense quark matter with chiral imbalance if there is nonzero chiral imbalance in two forms, chiral and chiral isospin one. It seems that in this case charged PC phase can be hardly avoided by any physical constraint on isospin imbalance and that this conclusion can be probably generalized from neutron star matter to the matter produced in heavy ion collisions or in neutron star mergers. The chiral limit and the physical point (physical pion mass) have both been considered and it was shown that the appearance of charged PC is not much affected by the consideration of nonzero current quark mass.



2018 ◽  
Vol 47 ◽  
pp. 1860093 ◽  
Author(s):  
T. G. Khunjua ◽  
V. C. Zhukovsky ◽  
K. G. Klimenko ◽  
R. N. Zhokhov

In this talk we present investigation of the phase structure of a (1+1)-dimensional quark model with four-quark interaction and in the presence of baryon ([Formula: see text]), isospin ([Formula: see text]) and chiral isospin ([Formula: see text]) chemical potentials. Spatially homogeneous and inhomogeneous (chiral density wave (for chiral condensate) and single wave (for charged pion condensate)) condensates are considered. It is established that in the large-[Formula: see text] limit ([Formula: see text] is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The primary conclusion of this investigation is the fact that chiral isospin chemical potential generates charged pion condensation with non-zero baryon density in dense quark matter. Moreover, it is shown that inhomogeneous charged PC phase with nonzero baryon density is induced in the model by arbitrary small values of the chemical potential [Formula: see text] (for a rather large region of [Formula: see text] and [Formula: see text]).



2018 ◽  
Vol 191 ◽  
pp. 05016 ◽  
Author(s):  
T. G. Khunjua ◽  
K.G. Klimenko ◽  
R. N. Zhokhov–Larionov

In this paper we investigate the phase structure of a (1+1) and (3+1)-dimensional quark model with four-quark interaction and in the presence of baryon (μB), isospin (μI) and chiral isospin (μI5) chemical potentials. It is shown that the chemical potential μI5 promotes the appearance of the charged PC phase with nonzero baryon density. Results of both models are qualitatively the same, this fact enhances one's confidence in the obtained predictions. It is established that in the large-Nc limit (Nc is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one.



2008 ◽  
Vol 58 (1) ◽  
pp. 57-68 ◽  
Author(s):  
D. Ebert ◽  
K. G. Klimenko ◽  
A. V. Tyukov ◽  
V. C. Zhukovsky


1999 ◽  
Vol 101 (5) ◽  
pp. 1043-1081 ◽  
Author(s):  
T. Takatsuka ◽  
R. Tamagaki


2006 ◽  
Vol 32 (5) ◽  
pp. 599-607 ◽  
Author(s):  
D Ebert ◽  
K G Klimenko




Sign in / Sign up

Export Citation Format

Share Document