scholarly journals Using circular polarization to test the composition and dynamics of astrophysical particle accelerators

2020 ◽  
Vol 102 (12) ◽  
Author(s):  
Céline Bœhm ◽  
Céline Degrande ◽  
Jakub Scholtz ◽  
Aaron C. Vincent
Author(s):  
K. F. Russell ◽  
L. L. Horton

Beams of heavy ions from particle accelerators are used to produce radiation damage in metal alloys. The damaged layer extends several microns below the surface of the specimen with the maximum damage and depth dependent upon the energy of the ions, type of ions, and target material. Using 4 MeV heavy ions from a Van de Graaff accelerator causes peak damage approximately 1 μm below the specimen surface. To study this area, it is necessary to remove a thickness of approximately 1 μm of damaged metal from the surface (referred to as “sectioning“) and to electropolish this region to electron transparency from the unirradiated surface (referred to as “backthinning“). We have developed electropolishing techniques to obtain electron transparent regions at any depth below the surface of a standard TEM disk. These techniques may be applied wherever TEM information is needed at a specific subsurface position.


2019 ◽  
Vol 139 (9) ◽  
pp. 568-575
Author(s):  
Yusuke Sakamoto ◽  
Daisuke Ishizuka ◽  
Tetsuya Matsuda ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

2018 ◽  
Author(s):  
Caleb I. Fassett ◽  
◽  
Isabel R. King ◽  
Cole A. Nypaver ◽  
Bradley J. Thomson

Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


Sign in / Sign up

Export Citation Format

Share Document