scholarly journals Eccentricity evolution of compact binaries and applications to gravitational-wave physics

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Vitor Cardoso ◽  
Caio F. B. Macedo ◽  
Rodrigo Vicente
Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 97
Author(s):  
Nils Andersson

We provide a bird’s-eye view of neutron-star seismology, which aims to probe the extreme physics associated with these objects, in the context of gravitational-wave astronomy. Focussing on the fundamental mode of oscillation, which is an efficient gravitational-wave emitter, we consider the seismology aspects of a number of astrophysically relevant scenarios, ranging from transients (like pulsar glitches and magnetar flares), to the dynamics of tides in inspiralling compact binaries and the eventual merged object and instabilities acting in isolated, rapidly rotating, neutron stars. The aim is not to provide a thorough review, but rather to introduce (some of) the key ideas and highlight issues that need further attention.


2020 ◽  
Vol 245 ◽  
pp. 07050
Author(s):  
Stefano Bagnasco

Advanced Virgo is an interferometer for the detection of gravitational waves at the European Gravitational Observatory in Italy. Along with the two Advanced LIGO interferometers in the US, Advanced Virgo is being used to collect data from astrophysical sources such as compact binary coalescences and is currently running the third observational period, collecting gravitational wave event candidates at a rate of more than once per week. Data from the interferometer are processed by running search pipelines for several expected signals, from coalescing compact binaries to continuous waves and burst events. Furthermore, detector characterisation studies are run. Some of the processing needs to be done with low latency, to be able to provide triggers for other observatories and make multi-messenger observations possible. Deep searches are run offline on external computing centres. Thus, data needs also to be reliably and promptly distributed from the EGO site to computer centres in Europe and the US for further analysis and archival storage. Two of the defining characteristics of Virgo computing are the heterogeneity of the activities and the need to interoperate with LIGO. A very wide array of analysis pipelines differing in scientific target, implementation details and running environment assumptions have to be allowed to run ubiquitously and uniformly on dedicated resources and, in perspective, on heterogeneous infrastructures. The current status, possible strategies and outlook of Virgo computing are discussed.


2019 ◽  
Vol 488 (3) ◽  
pp. 3810-3817 ◽  
Author(s):  
Jade Powell ◽  
Simon Stevenson ◽  
Ilya Mandel ◽  
Peter Tiňo

ABSTRACT The mass and spin distributions of compact binary gravitational-wave sources are currently uncertain due to complicated astrophysics involved in their formation. Multiple sub-populations of compact binaries representing different evolutionary scenarios may be present amongst sources detected by Advanced LIGO and Advanced Virgo. In addition to hierarchical modelling, unmodelled methods can aid in determining the number of sub-populations and their properties. In this paper, we apply Gaussian mixture model clustering to 1000 simulated gravitational-wave compact binary sources from a mixture of five sub-populations. Using both mass and spin as input parameters, we determine how many binary detections are needed to accurately determine the number of sub-populations and their mass and spin distributions. In the most difficult case that we consider, where two sub-populations have identical mass distributions but differ in their spin, which is poorly constrained by gravitational-wave detections, we find that ∼400 detections are needed before we can identify the correct number of sub-populations.


2010 ◽  
Vol 725 (1) ◽  
pp. L91-L96 ◽  
Author(s):  
Luke Zoltan Kelley ◽  
Enrico Ramirez-Ruiz ◽  
Marcel Zemp ◽  
Jürg Diemand ◽  
Ilya Mandel

Sign in / Sign up

Export Citation Format

Share Document