scholarly journals Unified weak and strong coupling framework for nuclear matter and neutron stars

2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Niko Jokela ◽  
Matti Järvinen ◽  
Govert Nijs ◽  
Jere Remes
2022 ◽  
Vol 258 ◽  
pp. 07004
Author(s):  
Niko Jokela

The holographic models for dense QCD matter work surprisingly well. A general implication seems that the deconfinement phase transition dictates the maximum mass of neutron stars. The nuclear matter phase turns out to be rather stiff which, if continuously merged with nuclear matter models based on effective field theories, leads to the conclusion that neutron stars do not have quark matter cores in the light of all current astrophysical data. We comment that as the perturbative QCD results are in stark contrast with strong coupling results, any future simulations of neutron star mergers incorporating corrections beyond ideal fluid should proceed cautiously. For this purpose, we provide a model which treats nuclear and quark matter phases in a unified framework at strong coupling.


2020 ◽  
Vol 1667 ◽  
pp. 012001
Author(s):  
Nicolas Baillot d’Étivaux ◽  
Jérôme Margueron ◽  
Sebastien Guillot ◽  
Natalie Webb ◽  
Màrcio Catelan ◽  
...  

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


2003 ◽  
Vol 18 (32) ◽  
pp. 2255-2264 ◽  
Author(s):  
O. A. Battistel ◽  
G. Krein

Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.


2019 ◽  
Vol 28 (05) ◽  
pp. 1950034
Author(s):  
Prafulla K. Panda ◽  
Constança Providência ◽  
Steven A. Moszkowski ◽  
Henrik Bohr ◽  
João da Providência

We generalize the Bogoliubov quark-meson coupling (QMC) model to also include hyperons. The hyperon-[Formula: see text]-meson couplings are fixed by the model and the hyperon-[Formula: see text]-meson couplings are fitted to the hyperon potentials in symmetric nuclear matter. The present model predicts neutron stars with masses above 2[Formula: see text] and the radius of a 1.4[Formula: see text] star [Formula: see text]14[Formula: see text]km. In the most massive stars, bags overlap at the core of the star, and this may be interpreted as a transition to deconfined quark matter.


2016 ◽  
pp. 1-21
Author(s):  
Pawel Haensel ◽  
Julian L. Zdunik
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document