scholarly journals Accurate model for the primordial black hole mass distribution from a peak in the power spectrum

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Andrew D. Gow ◽  
Christian T. Byrnes ◽  
Alex Hall
Author(s):  
Ryotaro Ishikawa ◽  
Sergei V Ketov

Abstract We study the parameter space of the effective (with two scalars) models of cosmological inflation and primordial black hole (PBH) formation in the modified (R+ R 2) supergravity. Our models describe double inflation, whose first stage is driven by Starobinsky’s scalaron coming from the R 2 gravity, and whose second stage is driven by another scalar belonging to the supergravity multiplet. The ultra-slow-roll regime between the two stages leads a large peak (enhancement) in the power spectrum of scalar perturbations, which results in efficient PBH formation. Both inflation and PBH formation are generic in our models, while those PBH can account for a significant part or the whole of dark matter. Some of the earlier proposed models in the same class are in tension (over 3σ) with the observed value of the scalar tilt ns , so that we study more general models with more parameters, and investigate the dependence of the cosmological tilts (ns,r) and the scalar power spectrum enhancement upon the parameters. The PBH masses and their density fraction (as part of dark matter) are also calculated. A good agreement (between 2σ and 3σ) with the observed value of ns requires fine tuning of the parameters, and it is only realized in the so-called δ-models. Our models offer the (super)gravitational origin of inflation, PBH and dark matter together, and may be confirmed or falsified by future precision measurements of the cosmic microwave background radiation and PBH-induced gravitational waves.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350022 ◽  
Author(s):  
D. DWIVEDEE ◽  
B. NAYAK ◽  
L. P. SINGH

We investigate the evolution of primordial black hole mass spectrum by including both accretion of radiation and Hawking evaporation within Brans–Dicke (BD) cosmology in radiation-, matter- and vacuum-dominated eras. We also consider the effect of evaporation of primordial black holes on the expansion dynamics of the universe. The analytic solutions describing the energy density of the black holes in equilibrium with radiation are presented. We demonstrate that these solutions act as attractors for the system ensuring stability for both linear and nonlinear situations. We show, however, that inclusion of accretion of radiation delays the onset of this equilibrium in all radiation-, matter- and vacuum-dominated eras.


2019 ◽  
Vol 882 (2) ◽  
pp. 121 ◽  
Author(s):  
Simon Stevenson ◽  
Matthew Sampson ◽  
Jade Powell ◽  
Alejandro Vigna-Gómez ◽  
Coenraad J. Neijssel ◽  
...  

2010 ◽  
Vol 725 (2) ◽  
pp. 1918-1927 ◽  
Author(s):  
Feryal Özel ◽  
Dimitrios Psaltis ◽  
Ramesh Narayan ◽  
Jeffrey E. McClintock

Sign in / Sign up

Export Citation Format

Share Document