scholarly journals Erratum: Isospin-violating mass differences and mixing angles: The role of quark masses

1981 ◽  
Vol 23 (3) ◽  
pp. 817-817 ◽  
Author(s):  
Nathan Isgur
Keyword(s):  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jia Liu ◽  
Navin McGinnis ◽  
Carlos E. M. Wagner ◽  
Xiao-Ping Wang

Abstract We report on an interesting realization of the QCD axion, with mass in the range $$ \mathcal{O} $$ O (10) MeV. It has previously been shown that although this scenario is stringently constrained from multiple sources, the model remains viable for a range of parameters that leads to an explanation of the Atomki experiment anomaly. In this article we study in more detail the additional constraints proceeding from recent low energy experiments and study the compatibility of the allowed parameter space with the one leading to consistency of the most recent measurements of the electron anomalous magnetic moment and the fine structure constant. We further provide an ultraviolet completion of this axion variant and show the conditions under which it may lead to the observed quark masses and CKM mixing angles, and remain consistent with experimental constraints on the extended scalar sector appearing in this Standard Model extension. In particular, the decay of the Standard Model-like Higgs boson into two light axions may be relevant and leads to a novel Higgs boson signature that may be searched for at the LHC in the near future.


2004 ◽  
Vol 598 (3-4) ◽  
pp. 263-272 ◽  
Author(s):  
Pyungwon Ko ◽  
Tatsuo Kobayashi ◽  
Jae-hyeon Park
Keyword(s):  

2014 ◽  
Vol 29 (22) ◽  
pp. 1450114 ◽  
Author(s):  
Srubabati Goswami ◽  
Subrata Khan ◽  
Sasmita Mishra

We consider the threshold effect on the renormalization group (RG) evolution of the neutrino masses and mixing angles in TeV scale seesaw models. We obtain the analytic expressions using the factorization method in the presence of threshold effects. We also perform numerical study of RG effects in two specific low scale seesaw models following the bottom-up approach and ascertain the role of seesaw thresholds in altering the values of masses and mixing angles during RG evolution.


1992 ◽  
Vol 07 (25) ◽  
pp. 6357-6370 ◽  
Author(s):  
ROBERT E. SHROCK

We study an ansatz for the quark mass matrix in which all of the nondiagonal entries are nonzero, but which still allows the quark mixing angles to be calculated in terms of ratios of quark masses and certain phases. Analytic calculations of the orthogonal rotation matrices in the up and down quark sectors and the resultant observed quark mixing matrix are presented. Comparison with experimental data is given.


2007 ◽  
Vol 16 (05) ◽  
pp. 1383-1393 ◽  
Author(s):  
HIDEYUKI SAWANAKA

Realistic quark masses and mixing angles are obtained applying the successful A4 family symmetry for leptons, motivated by the quark-lepton assignments of SU (5). The A4 symmetry is suitable to give tri-bimaximal neutrino mixing matrix which is consistent with current experimental data. We study new scenario for the quark sector with the A4 symmetry.


2013 ◽  
Vol 28 (28) ◽  
pp. 1350149 ◽  
Author(s):  
YONI BENTOV ◽  
A. ZEE

We study the LHC phenomenology of a general class of "Private Higgs" (PH) models, in which fermions obtain their masses from their own Higgs doublets with [Formula: see text] Yukawa couplings, and the mass hierarchy is translated into a dynamical chain of vacuum expectation values. This is accomplished by introducing a number of light gauge-singlet scalars, the "darkons," some of which could play the role of dark matter. These models allow for substantial modifications to the decays of the lightest Higgs boson, for instance through mixing with TeV-scale PH fields and light darkons: in particular, one could accommodate [Formula: see text] flavor-uncorrelated deviations from the SM [Formula: see text] vertices with TeV-scale degrees of freedom. We also discuss a new implementation of the PH framework, in which the quark and neutrino mixing angles arise as one-loop corrections to the leading order picture.


Sign in / Sign up

Export Citation Format

Share Document