scholarly journals Threshold effects and renormalization group evolution of neutrino parameters in TeV scale seesaw models

2014 ◽  
Vol 29 (22) ◽  
pp. 1450114 ◽  
Author(s):  
Srubabati Goswami ◽  
Subrata Khan ◽  
Sasmita Mishra

We consider the threshold effect on the renormalization group (RG) evolution of the neutrino masses and mixing angles in TeV scale seesaw models. We obtain the analytic expressions using the factorization method in the presence of threshold effects. We also perform numerical study of RG effects in two specific low scale seesaw models following the bottom-up approach and ascertain the role of seesaw thresholds in altering the values of masses and mixing angles during RG evolution.

2009 ◽  
Vol 820 (1-2) ◽  
pp. 116-147 ◽  
Author(s):  
Joydeep Chakrabortty ◽  
Amol Dighe ◽  
Srubabati Goswami ◽  
Shamayita Ray

2013 ◽  
Vol 28 (11) ◽  
pp. 1330007 ◽  
Author(s):  
A. S. CORNELL ◽  
ALDO DEANDREA ◽  
LU-XIN LIU ◽  
AHMAD TARHINI

We review the renormalization group evolution of quark and lepton masses, mixing angles and phases both in the UED extension of the Standard Model (SM) and of the Minimal Supersymmetric Standard Model (MSSM). We consider two typical scenarios: all matter fields propagating in the bulk and matter fields constrained to the brane. The resulting renormalization group evolution equations in these scenarios are compared with the existing results in the literature, together with their implications.


2016 ◽  
Vol 31 (17) ◽  
pp. 1630021 ◽  
Author(s):  
Martin Spinrath

There is a wide class of models which give a dynamical description of the origin of flavor in terms of spontaneous symmetry breaking of an underlying symmetry. Many of these models exhibit sum rules which relate on the one hand mixing angles and the Dirac CP phase with each other and/or on the other hand neutrino masses and Majorana phases with each other. We will briefly sketch how this happens and discuss briefly the impact of renormalization group corrections to the mass sum rules.


2014 ◽  
Vol 29 (22) ◽  
pp. 1450113 ◽  
Author(s):  
Rupak Dutta ◽  
Upender Ch ◽  
Anjan K. Giri ◽  
Narendra Sahu

We discuss the role of lightest neutrino mass (m0) in the neutrino mass matrix, defined in a flavor basis, through a bottom-up approach using the current neutrino oscillation data. We find that if m0 < 10-3 eV , then the deviation δMν in the neutrino mass matrix from a tree-level, say tribimaximal neutrino mass matrix, does not depend on m0. As a result δMν's are exactly predicted in terms of the experimentally determined quantities such as solar and atmospheric mass squared differences and the mixing angles. On the other hand for m0 ≳10-3 eV , δMν strongly depends on m0 and hence cannot be determined within the knowledge of oscillation parameters alone. In this limit, we provide an exponential parametrization for δMν for all values of m0 such that it can factorize the m0 dependency of δMν from rest of the oscillation parameters. This helps us in finding δMν as a function of the solar and atmospheric mass squared differences and the mixing angles for all values of m0. We use this information to build up a model of neutrino masses and mixings in a top-down scenario which can predict large θ13 perturbatively.


2007 ◽  
Vol 22 (33) ◽  
pp. 2539-2547 ◽  
Author(s):  
BISWAJOY BRAHMACHARI

If N = 2 supersymmetry breaks to N = 1 supersymmetry at an intermediate scale m2 and then, later on, N = 1 supersymmetry breaks and produces standard model at a scale m susy such that m2>m susy , renormalization group evolution of three gauge couplings are altered above the scale m2, changing the unification scale and the unified coupling. We show that when we enforce this general condition m2>m susy on the solutions of the renormalization group equations, the condition is translated into an upper bound on the scale m susy . Using presently favored values of α1(mz), α2(mz), α3(mz), we get m susy < 4.5 ×109 GeV for the central value of α3(mZ). When low energy threshold effect is present, this bound gets smeared yet remains generally stable in the 109–1010 GeV range. We also show that if we demand string unification instead of having a unified gauge theory, this constraint can be changed by exotic hypercharge normalizations.


2010 ◽  
Vol 25 (23) ◽  
pp. 4339-4384 ◽  
Author(s):  
SHAMAYITA RAY

We consider different extensions of the Standard Model which can give rise to the small active neutrino masses through seesaw mechanisms, and their mixing. These tiny neutrino masses are generated at some high energy scale by the heavy seesaw fields which then get sequentially decoupled to give an effective dimension-5 operator at the low energy. The renormalization group evolution of the masses and the mixing parameters of the three active neutrinos in the high energy as well as the low energy effective theory is reviewed in this paper.


2018 ◽  
Vol 5 (5) ◽  
Author(s):  
Juan Carlos Criado ◽  
Ferruccio Feruglio

We analyze a modular invariant model of lepton masses, with neutrino masses originating either from the Weinberg operator or from the seesaw. The constraint provided by modular invariance is so strong that neutrino mass ratios, lepton mixing angles and Dirac/Majorana phases do not depend on any Lagrangian parameter. They only depend on the vacuum of the theory, parametrized in terms of a complex modulus and a real field. Thus eight measurable quantities are described by the three vacuum parameters, whose optimization provides an excellent fit to data for the Weinberg operator and a good fit for the seesaw case. Neutrino masses from the Weinberg operator (seesaw) have inverted (normal) ordering. Several sources of potential corrections, such as higher dimensional operators, renormalization group evolution and supersymmetry breaking effects, are carefully discussed and shown not to affect the predictions under reasonable conditions.


2005 ◽  
Vol 2005 (09) ◽  
pp. 081-081 ◽  
Author(s):  
Manfred Lindner ◽  
Michael Ratz ◽  
Michael Andreas Schmidt

Author(s):  
Margaret Morrison

After reviewing some of the recent literature on non-causal and mathematical explanation, this chapter develops an argument as to why renormalization group (RG) methods should be seen as providing non-causal, yet physical, information about certain kinds of systems/phenomena. The argument centres on the structural character of RG explanations and the relationship between RG and probability theory. These features are crucial for the claim that the non-causal status of RG explanations involves something different from simply ignoring or “averaging over” microphysical details—the kind of explanations common to statistical mechanics. The chapter concludes with a discussion of the role of RG in treating dynamical systems and how that role exemplifies the structural aspects of RG explanations which in turn exemplifies the non-causal features.


Sign in / Sign up

Export Citation Format

Share Document