Light neutral boson in spinor-connection theory

1987 ◽  
Vol 36 (12) ◽  
pp. 3821-3824 ◽  
Author(s):  
J. T. Lynch
Keyword(s):  
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrew Beckett ◽  
José Figueroa-O’Farrill

Abstract We calculate the relevant Spencer cohomology of the minimal Poincaré superalgebra in 5 spacetime dimensions and use it to define Killing spinors via a connection on the spinor bundle of a 5-dimensional lorentzian spin manifold. We give a definition of bosonic backgrounds in terms of this data. By imposing constraints on the curvature of the spinor connection, we recover the field equations of minimal (ungauged) 5-dimensional supergravity, but also find a set of field equations for an $$ \mathfrak{sp} $$ sp (1)-valued one-form which we interpret as the bosonic data of a class of rigid supersymmetric theories on curved backgrounds. We define the Killing superalgebra of bosonic backgrounds and show that their existence is implied by the field equations. The maximally supersymmetric backgrounds are characterised and their Killing superalgebras are explicitly described as filtered deformations of the Poincaré superalgebra.


1990 ◽  
Vol 41 (2) ◽  
pp. 719-719
Author(s):  
J. T. Lynch
Keyword(s):  

2009 ◽  
Vol 06 (05) ◽  
pp. 805-824 ◽  
Author(s):  
DANIEL CANARUTTO

Fermi transport of spinors can be precisely understood in terms of two-spinor geometry. By using a partly original, previously developed treatment of two-spinors and classical fields, we describe the family of all transports, along a given one-dimensional timelike submanifold of spacetime, which yield the standard Fermi transport of vectors. Moreover, we show that this family has a distinguished member, whose relation to the Fermi transport of vectors is similar to the relation between the spinor connection and spacetime connection. Various properties of the Fermi transport of spinors are discussed, and applied to the construction of free electron states for a detector-dependent QED formalism introduced in a previous paper.


1975 ◽  
Vol 1 (3-4) ◽  
pp. 345-350 ◽  
Author(s):  
G. Szekeres
Keyword(s):  

Author(s):  
Ying-Qiu Gu

The interaction between spinors and gravity is the most complicated and subtle interaction in the universe, which involves the basic problem to unified quantum theory and general relativity. By means of Clifford Algebra, a unified language and tool to describe the rules of nature, this paper systematically discusses the dynamics and properties of spinor fields in curved space-time, such as the decomposition of the spinor connection, the classical approximation of Dirac equation, the energy momentum tensor of spinors and so on. To split spinor connection into Keller connection $\Upsilon_\mu\in\Lambda^1$ and pseudo-vector potential $\Omega_\mu\in\Lambda^3$ by Clifford algebra not only makes the calculation simpler, but also highlights their different physical meanings. The representation of the new spinor connection is dependent only on the metric, but not on the Dirac matrix. Keller connection only corresponds to geometric calculations, but the potential $\Omega_\mu$ has dynamical effects, which couples with the spin of a spinor and may be the origin of the celestial magnetic field. Only in the new form of connection can we clearly define the classical concepts for the spinor field and then derive its complete classical dynamics, that is, Newton's second law of particles. To study the interaction between space-time and fermion, we need an explicit form of the energy-momentum tensor of spinor fields. However, the energy-momentum tensor is closely related to the tetrad, and the tetrad cannot be uniquely determined by the metric. This uncertainty increases the difficulty of deriving rigorous expression. In this paper, through a specific representation of tetrad, we derive the concrete energy-momentum tensor and its classical approximation. In the derivation of energy-momentum tensor, we obtain a spinor coefficient table $S^{\mu\nu}_{ab}$, which plays an important role in the interaction between spinor and gravity. From this paper we find that, Clifford algebra has irreplaceable advantages in the study of geometry and physics.


Sign in / Sign up

Export Citation Format

Share Document