dirac matrix
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1931
Author(s):  
Ying-Qiu Gu

By means of Clifford Algebra, a unified language and tool to describe the rules of nature, this paper systematically discusses the dynamics and properties of spinor fields in curved space-time, such as the decomposition of the spinor connection, the classical approximation of the Dirac equation, the energy-momentum tensor of spinors and so on. To split the spinor connection into the Keller connection Υμ∈Λ1 and the pseudo-vector potential Ωμ∈Λ3 not only makes the calculation simpler, but also highlights their different physical meanings. The representation of the new spinor connection is dependent only on the metric, but not on the Dirac matrix. Only in the new form of connection can we clearly define the classical concepts for the spinor field and then derive its complete classical dynamics, that is, Newton’s second law of particles. To study the interaction between space-time and fermion, we need an explicit form of the energy-momentum tensor of spinor fields; however, the energy-momentum tensor is closely related to the tetrad, and the tetrad cannot be uniquely determined by the metric. This uncertainty increases the difficulty of deriving rigorous expression. In this paper, through a specific representation of tetrad, we derive the concrete energy-momentum tensor and its classical approximation. In the derivation of energy-momentum tensor, we obtain a spinor coefficient table Sabμν, which plays an important role in the interaction between spinor and gravity. From this paper we find that Clifford algebra has irreplaceable advantages in the study of geometry and physics.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Weslei Fontana ◽  
Pedro Gomes ◽  
Claudio Chamon

We use Dirac matrix representations of the Clifford algebra to build fracton models on the lattice and their effective Chern-Simons-like theory. As an example, we build lattice fractons in odd D spatial dimensions and their (D+1) spacetime dimensional effective theory. The model possesses an anti-symmetric K matrix resembling that of hierarchical quantum Hall states. The gauge charges are conserved in sub-dimensional manifolds which ensures the fractonic behavior. The construction extends to any lattice fracton model built from commuting projectors and with tensor products of spin-1/2 degrees of freedom at the sites.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunlong Zheng

Abstract Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of degrees of freedom (DOFs) is three. Then in both Einstein frame and Jordan frame, we perform the Hamiltonian analysis for the extended mimetic gravity with higher derivatives directly coupled to the Ricci scalar. We show that different from previous studies working at the cosmological perturbation level, where only three propagating DOFs show up, this generalized mimetic model, in general, has four DOFs. To understand this discrepancy, we consider the unitary gauge and find out that the number of DOFs reduces to three. We conclude that the reason why this system looks peculiar is that the Dirac matrix of all secondary constraints becomes singular in the unitary gauge, resulting in extra secondary constraints and thus reducing the number of DOFs. Furthermore, we give a simple example of a dynamic system to illustrate how gauge choice can affect the number of secondary constraints as well as the DOFs when the rank of the Dirac matrix is gauge dependent.


Author(s):  
Ying-Qiu Gu

The interaction between spinors and gravity is the most complicated and subtle interaction in the universe, which involves the basic problem to unified quantum theory and general relativity. By means of Clifford Algebra, a unified language and tool to describe the rules of nature, this paper systematically discusses the dynamics and properties of spinor fields in curved space-time, such as the decomposition of the spinor connection, the classical approximation of Dirac equation, the energy momentum tensor of spinors and so on. To split spinor connection into Keller connection $\Upsilon_\mu\in\Lambda^1$ and pseudo-vector potential $\Omega_\mu\in\Lambda^3$ by Clifford algebra not only makes the calculation simpler, but also highlights their different physical meanings. The representation of the new spinor connection is dependent only on the metric, but not on the Dirac matrix. Keller connection only corresponds to geometric calculations, but the potential $\Omega_\mu$ has dynamical effects, which couples with the spin of a spinor and may be the origin of the celestial magnetic field. Only in the new form of connection can we clearly define the classical concepts for the spinor field and then derive its complete classical dynamics, that is, Newton's second law of particles. To study the interaction between space-time and fermion, we need an explicit form of the energy-momentum tensor of spinor fields. However, the energy-momentum tensor is closely related to the tetrad, and the tetrad cannot be uniquely determined by the metric. This uncertainty increases the difficulty of deriving rigorous expression. In this paper, through a specific representation of tetrad, we derive the concrete energy-momentum tensor and its classical approximation. In the derivation of energy-momentum tensor, we obtain a spinor coefficient table $S^{\mu\nu}_{ab}$, which plays an important role in the interaction between spinor and gravity. From this paper we find that, Clifford algebra has irreplaceable advantages in the study of geometry and physics.


Risks ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 99 ◽  
Author(s):  
Claude Lefèvre ◽  
Stéphane Loisel ◽  
Muhsin Tamturk ◽  
Sergey Utev

A quantum mechanics approach is proposed to model non-life insurance risks and to compute the future reserve amounts and the ruin probabilities. The claim data, historical or simulated, are treated as coming from quantum observables and analyzed with traditional machine learning tools. They can then be used to forecast the evolution of the reserves of an insurance company. The following methodology relies on the Dirac matrix formalism and the Feynman path-integral method.


2011 ◽  
Vol 26 (18) ◽  
pp. 1375-1379 ◽  
Author(s):  
D. FALCONE

A triangular ansatz for the seesaw mechanism and baryogenesis via leptogenesis is explored. In a basis where both the charged lepton and the Majorana mass matrix are diagonal, the Dirac mass matrix can generally be written as the product of a unitary times a triangular matrix. We assume the unitary matrix to be the identity and then an upper triangular Dirac matrix. Constraints from bilarge lepton mixing and leptogenesis are studied.


2008 ◽  
Vol 78 (8) ◽  
Author(s):  
Andrei Alexandru ◽  
Ivan Horváth ◽  
Keh-Fei Liu
Keyword(s):  

2008 ◽  
Author(s):  
Keshav N. Shrivastava ◽  
H. B. Senin ◽  
G. Carini ◽  
J. B. Abdullah ◽  
D. A. Bradley

Sign in / Sign up

Export Citation Format

Share Document