Bounds on the energy of theN-body problem with linear combinations of power-law potentials and the logarithmic potential

1988 ◽  
Vol 37 (2) ◽  
pp. 540-545 ◽  
Author(s):  
Richard L. Hall
2011 ◽  
Vol 52 (9) ◽  
pp. 092901 ◽  
Author(s):  
Zhifu Xie ◽  
Kenyaita Hodge ◽  
Krystolyn Henderson ◽  
Michael Westbrook

Nonlinearity ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 388-407
Author(s):  
Antonio Carlos Fernandes ◽  
Luis Fernando Mello ◽  
Claudio Vidal

2020 ◽  
Vol 497 (3) ◽  
pp. 3694-3712
Author(s):  
Viraj Manwadkar ◽  
Alessandro A Trani ◽  
Nathan W C Leigh

ABSTRACT We study chaos and Lévy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $\mathcal {S}$ and the Lévy flight (LF) index $\mathcal {L}$, that are derived from the Agekyan–Anosova maps and homology radius $R_{\mathcal {H}}$. Based on these metrics, we develop detailed procedures to isolate the ergodic interactions and Lévy flight interactions. This enables us to study the three-body lifetime distribution in more detail by decomposing it into the individual distributions from the different kinds of interactions. We observe that ergodic interactions follow an exponential decay distribution similar to that of radioactive decay. Meanwhile, Lévy flight interactions follow a power-law distribution. Lévy flights in fact dominate the tail of the general three-body lifetime distribution, providing conclusive evidence for the speculated connection between power-law tails and Lévy flight interactions. We propose a new physically motivated model for the lifetime distribution of three-body systems and discuss how it can be used to extract information about the underlying ergodic and Lévy flight interactions. We discuss ejection probabilities in three-body systems in the ergodic limit and compare it to previous ergodic formalisms. We introduce a novel mechanism for a three-body relaxation process and discuss its relevance in general three-body systems.


1999 ◽  
Vol 173 ◽  
pp. 289-293 ◽  
Author(s):  
J.R. Donnison ◽  
L.I. Pettit

AbstractA Pareto distribution was used to model the magnitude data for short-period comets up to 1988. It was found using exponential probability plots that the brightness did not vary with period and that the cut-off point previously adopted can be supported statistically. Examination of the diameters of Trans-Neptunian bodies showed that a power law does not adequately fit the limited data available.


1968 ◽  
Vol 11 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Alan Gill ◽  
Charles I. Berlin

The unconditioned GSR’s elicited by tones of 60, 70, 80, and 90 dB SPL were largest in the mouse in the ranges around 10,000 Hz. The growth of response magnitude with intensity followed a power law (10 .17 to 10 .22 , depending upon frequency) and suggested that the unconditioned GSR magnitude assessed overall subjective magnitude of tones to the mouse in an orderly fashion. It is suggested that hearing sensitivity as assessed by these means may be closely related to the spectral content of the mouse’s vocalization as well as to the number of critically sensitive single units in the mouse’s VIIIth nerve.


2007 ◽  
Vol 23 (3) ◽  
pp. 157-165 ◽  
Author(s):  
Carmen Hagemeister

Abstract. When concentration tests are completed repeatedly, reaction time and error rate decrease considerably, but the underlying ability does not improve. In order to overcome this validity problem this study aimed to test if the practice effect between tests and within tests can be useful in determining whether persons have already completed this test. The power law of practice postulates that practice effects are greater in unpracticed than in practiced persons. Two experiments were carried out in which the participants completed the same tests at the beginning and at the end of two test sessions set about 3 days apart. In both experiments, the logistic regression could indeed classify persons according to previous practice through the practice effect between the tests at the beginning and at the end of the session, and, less well but still significantly, through the practice effect within the first test of the session. Further analyses showed that the practice effects correlated more highly with the initial performance than was to be expected for mathematical reasons; typically persons with long reaction times have larger practice effects. Thus, small practice effects alone do not allow one to conclude that a person has worked on the test before.


1975 ◽  
Vol 20 (8) ◽  
pp. 660-660
Author(s):  
MADGE SCHEIBEL ◽  
ARNOLD SCHEIBEL

2006 ◽  
Author(s):  
Gerardo Ramirez ◽  
Sonia Perez ◽  
John G. Holden

Sign in / Sign up

Export Citation Format

Share Document