Parametrization of the four-generation quark mixing matrix by the moduli of its matrix elements

1989 ◽  
Vol 40 (7) ◽  
pp. 2440-2448 ◽  
Author(s):  
L. Lavoura

1988 ◽  
Vol 207 (3) ◽  
pp. 329-332
Author(s):  
L. Ł;ukaszuk ◽  
X.Y. Pham


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sebastian A. R. Ellis ◽  
Kevin J. Kelly ◽  
Shirley Weishi Li

Abstract The unitarity of the lepton mixing matrix is a critical assumption underlying the standard neutrino-mixing paradigm. However, many models seeking to explain the as-yet-unknown origin of neutrino masses predict deviations from unitarity in the mixing of the active neutrino states. Motivated by the prospect that future experiments may provide a precise measurement of the lepton mixing matrix, we revisit current constraints on unitarity violation from oscillation measurements and project how next-generation experiments will improve our current knowledge. With the next-generation data, the normalizations of all rows and columns of the lepton mixing matrix will be constrained to ≲10% precision, with the e-row best measured at ≲1% and the τ-row worst measured at ∼10% precision. The measurements of the mixing matrix elements themselves will be improved on average by a factor of 3. We highlight the complementarity of DUNE, T2HK, JUNO, and IceCube Upgrade for these improvements, as well as the importance of ντ appearance measurements and sterile neutrino searches for tests of leptonic unitarity.



1992 ◽  
Vol 01 (02) ◽  
pp. 379-399 ◽  
Author(s):  
V.A. NAUMOV

The phenomenon of Dirac neutrino oscillations in medium of varying density and composition is studied for the case of three lepton generations using the Berry adiabatic approach. The expressions for the topological phases γN are derived. It is shown that the Berry phases, arising when matter parameters vary periodically, are equal to zero identically, while in the case of noncyclic evolution, γN≢0 (in a special gauge) under the condition that all matrix elements of the flavor-mixing matrix in vacuum, CP-violating (Dirac) phase and neutrino-mass-squares differences are not equal to zero simultaneously. Exact formulas for the neutrino-mixing matrix in matter and adiabatic time-evolution operator are obtained. The recursion algorithm for the calculation of corrections to the adiabatic approximation is given



1990 ◽  
Vol 05 (10) ◽  
pp. 743-754 ◽  
Author(s):  
V. BARGER ◽  
J. L. HEWETT ◽  
T. G. RIZZO

Constraints on the masses of possible fourth generation quarks (a, υ) are obtained from measurements of the ρ parameter and the elements of the quark mixing matrix. Stringent mass limits are found when the off-diagonal elements Vtυ and Vab are large. For example, with mt=90 GeV and |Vtυ|≃0.5 we find ma,v≤ 300 GeV. Stronger constraints are obtained as mt or |Vtυ| increase.



2020 ◽  
Vol 960 ◽  
pp. 115208
Author(s):  
Drona Vatsyayan ◽  
Anirban Kundu
Keyword(s):  


1983 ◽  
Vol 149 (2) ◽  
pp. 273-285 ◽  
Author(s):  
H Katsumata ◽  
Y Tomozawa




1992 ◽  
Vol 07 (25) ◽  
pp. 6357-6370 ◽  
Author(s):  
ROBERT E. SHROCK

We study an ansatz for the quark mass matrix in which all of the nondiagonal entries are nonzero, but which still allows the quark mixing angles to be calculated in terms of ratios of quark masses and certain phases. Analytic calculations of the orthogonal rotation matrices in the up and down quark sectors and the resultant observed quark mixing matrix are presented. Comparison with experimental data is given.



2005 ◽  
Vol 20 (16) ◽  
pp. 1217-1225 ◽  
Author(s):  
LUÍS LAVOURA ◽  
ERNEST MA

We propose two simple models for the quark mass matrices which may be implemented through an S3×Z2 symmetry in a supersymmetric context. Each model has eight parameters and, therefore, makes two independent predictions for the quark mixing matrix. The first model predicts [Formula: see text] and [Formula: see text]. The second model, in which the forms of the up-type-quark and down-type-quark mass matrices are interchanged relative to the first one, predicts |Vub/Vcb|~0.11 and |Vtd/Vts|~0.33. Both models have sin 2β~0.5.



1997 ◽  
Vol 12 (24) ◽  
pp. 4411-4424 ◽  
Author(s):  
Tae Hoon Lee ◽  
Dae Sung Hwang

We study the charged and the neutral current interactions of quarks in an SU (3)L × U (1)X electroweak model. Based on the assumption that u-type quarks coincide with their mass eigenstates, we obtain a new mixing angle θ′ and another CP violating phase δ′ in the extra heavy quark sector besides the usual Kobayashi–Maskawa mixing matrix. This new phase δ′ does not effect a change in the mass matrix elements of the [Formula: see text] systems when θ′ is small, but extra heavy quarks and gauge bosons give rise to additional contribution to the real part of the off-diagonal mass matrix elements and then the CP violation parameter ε is modified. By requiring that the tree level FCNC does not have an important effect on the [Formula: see text] and [Formula: see text] mixings in this model, we obtain a new lower bound on the mass of the extra heavy neutral gauge boson as 1.8 TeV.



Sign in / Sign up

Export Citation Format

Share Document