scholarly journals Solvable model of two-dimensional dilaton gravity coupled to a massless scalar field

1998 ◽  
Vol 57 (8) ◽  
pp. 5295-5298 ◽  
Author(s):  
Marco Cavaglià
Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 186
Author(s):  
Mercedes Martín-Benito ◽  
Rita B. Neves

We provide an analytical solution to the quantum dynamics of a flat Friedmann-Lemaître- Robertson-Walker model with a massless scalar field in the presence of a small and positive cosmological constant, in the context of Loop Quantum Cosmology. We use a perturbative treatment with respect to the model without a cosmological constant, which is exactly solvable. Our solution is approximate, but it is precisely valid at the high curvature regime where quantum gravity corrections are important. We compute explicitly the evolution of the expectation value of the volume. For semiclassical states characterized by a Gaussian spectral profile, the introduction of a positive cosmological constant displaces the bounce of the solvable model to lower volumes and to higher values of the scalar field. These displacements are state dependent, and in particular, they depend on the peak of the Gaussian profile, which measures the momentum of the scalar field. Moreover, for those semiclassical states, the bounce remains symmetric, as in the vanishing cosmological constant case. However, we show that the behavior of the volume is more intricate for generic states, leading in general to a non-symmetric bounce.


2015 ◽  
Vol 30 (13) ◽  
pp. 1550077 ◽  
Author(s):  
J. Ambjørn ◽  
A. Görlich ◽  
J. Jurkiewicz ◽  
H. Zhang

Causal Dynamical Triangulations (CDT) provide a non-perturbative formulation of Quantum Gravity assuming the existence of a global time foliation. In our earlier study we analyzed the effect of including d copies of a massless scalar field in the two-dimensional CDT model with imaginary time. For d > 1 we observed the formation of a "blob", somewhat similar to that observed in four-dimensional CDT without matter. In the two-dimensional case the "blob" has a Hausdorff dimension DH = 3. In this paper, we study the spectral dimension DS of the two-dimensional CDT-universe, both for d = 0 (pure gravity) and d = 4. We show that in both cases the spectral dimension is consistent with DS = 2.


2011 ◽  
Vol 20 (13) ◽  
pp. 2613-2622 ◽  
Author(s):  
J. SADEGHI ◽  
B. POURHASSAN

The aim of this paper is to use correspondence between solutions in the c = 1 matrix model collective field theory and coupled dilaton-gravity to a massless scalar field. First, we obtain the incoming and outgoing fluctuations for the time-dependent backgrounds with the lightlike and spacelike boundaries. In the case of spacelike boundaries, we have done here for the first time. Then by using the leg-pole transformations we find the corresponding tachyon field in the two-dimensional string theory for the lightlikes and spacelikes boundary.


Sign in / Sign up

Export Citation Format

Share Document