scholarly journals Implications of the KamLAND measurement on the lepton flavor mixing matrix and the neutrino mass matrix

2003 ◽  
Vol 67 (5) ◽  
Author(s):  
Wan-lei Guo ◽  
Zhi-zhong Xing
2000 ◽  
Vol 15 (37) ◽  
pp. 2257-2263
Author(s):  
N. HABA ◽  
TOMOHARU SUZUKI

It is important to measure Ue3 in the lepton flavor mixing matrix in order to understand the structure of Majorana neutrino mass matrix. Recently it is conjectured that the measurement of Ue3 would discriminate one solution among various solar neutrino ones provided that the three mass eigenvalues of neutrinos have the relation m1≪m2≪m3 or m1~m2≪m3. In this letter we show that this conjecture is rather restrictive and the relation [Formula: see text] is derived by a nontrivial assumption and Ue3 cannot discriminate among solar neutrino oscillation solutions without the information on another physical parameter.


2001 ◽  
Vol 16 (33) ◽  
pp. 2169-2175 ◽  
Author(s):  
KYUNGSIK KANG ◽  
SIN KYU KANG ◽  
C. S. KIM ◽  
SUN MYONG KIM

In view of the recent announcement on nonzero neutrino mass from Super-Kamiokande experiment, it would be very timely to investigate all the possible scenarios on masses and mixings of light neutrinos. Recently suggested mass matrix texture for the quark CKM mixing, which can be originated from the family permutation symmetry and its suitable breakings, is assumed for the neutrino mass matrix and determined by the four combinations of solar, atmospheric and LSND neutrino data and cosmological hot dark matter bound as input constraints. The charged-lepton mass matrix is assumed to be diagonal so that the neutrino mixing matrix can be identified directly as the lepton flavor mixing matrix and no CP invariance violation originates from the leptonic sector. The results favor hierarchical patterns for the neutrino masses, which follow from the case when the solar-atmospheric data is used.


2007 ◽  
Vol 16 (01) ◽  
pp. 1-50 ◽  
Author(s):  
WAN-LEI GUO ◽  
ZHI-ZHONG XING ◽  
SHUN ZHOU

We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as μ→e+γ, are also discussed in the supersymmetric extension of the MSM.


2014 ◽  
Vol 29 (33) ◽  
pp. 1450179
Author(s):  
G. K. Leontaris ◽  
N. D. Vlachos

We investigate the possibility of expressing the charged leptons and neutrino mass matrices as linear combinations of elements of a single finite group. Constraints imposed on the resulting mixing matrix by current data restrict the group types, but allow a nonzero value for the θ13 mixing angle.


2003 ◽  
Vol 18 (22) ◽  
pp. 3957-3970 ◽  
Author(s):  
P. F. HARRISON ◽  
W. G. SCOTT

Encouraged by the phenomenological success of the tri-bimaximal hypothesis, we postulate that the neutrino mass matrix in the lepton flavour basis is an S3 group matrix in the natural representation of S3. This immediately requires one neutrino to be trimaximally mixed, as suggested by the solar neutrino data. We go on to postulate that the charged-lepton mass matrix in the neutrino mass-basis is an S3 class matrix in the natural representation of the S3 class-algebra, leading to exact tri-bimaximal mixing which is compatible with data overall. The above two postulates are mutually consistent, and imply that the neutrino mass matrix in the flavour basis is an S3⊃S2 class operator, in the natural representation of the S3 group (the S2 being associated with mu-tau interchange). Thus the tri-bimaximal mixing matrix is seen to be closely related to the S3 group characters, and may be properly regarded as simply the table of induction coefficients for the [2]×[1]=[3]+[21] induced representation of S3.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Di Zhang

Abstract We propose a leptoquark model with two scalar leptoquarks $$ {S}_1\left(\overline{3},1,\frac{1}{3}\right) $$ S 1 3 ¯ 1 1 3 and $$ {\tilde{R}}_2\left(3,2,\frac{1}{6}\right) $$ R ˜ 2 3 2 1 6 to give a combined explanation of neutrino masses, lepton flavor mixing and the anomaly of muon g − 2, satisfying the constraints from the radiative decays of charged leptons. The neutrino masses are generated via one-loop corrections resulting from a mixing between S1 and $$ {\tilde{R}}_2 $$ R ˜ 2 . With a set of specific textures for the leptoquark Yukawa coupling matrices, the neutrino mass matrix possesses an approximate μ-τ reflection symmetry with (Mν)ee = 0 only in favor of the normal neutrino mass ordering. We show that this model can successfully explain the anomaly of muon g − 2 and current experimental neutrino oscillation data under the constraints from the radiative decays of charged leptons.


2013 ◽  
Vol 28 (29) ◽  
pp. 1350157 ◽  
Author(s):  
YONI BENTOV ◽  
A. ZEE

In the spirit of a previous study of the tetrahedral group T ≃A4, we discuss a minimalist scheme to derive the neutrino mixing matrix using the double tetrahedral group T′, the double cover of T. The new features are three distinct two-dimensional representations and complex Clebsch–Gordan coefficients, which can result in a geometric source of CP violation in the neutrino mass matrix. In an appendix, we derive explicitly the relevant group theory for the tetrahedral group T and its double cover T′.


2005 ◽  
Vol 20 (34) ◽  
pp. 2601-2605 ◽  
Author(s):  
ERNEST MA

In a new application of the discrete non-Abelian symmetry A4 using the canonical seesaw mechanism, a three-parameter form of the neutrino mass matrix is derived. It predicts the following mixing angles for neutrino oscillations: θ13=0, sin 2θ23=1/2, and sin 2θ12 close, but not exactly equal to 1/3, in one natural symmetry limit.


Sign in / Sign up

Export Citation Format

Share Document