scholarly journals Towards a realistic neutron star binary inspiral: Initial data and multiple orbit evolution in full general relativity

2004 ◽  
Vol 69 (6) ◽  
Author(s):  
Mark Miller ◽  
Philip Gressman ◽  
Wai-Mo Suen
2001 ◽  
Vol 205 ◽  
pp. 408-409
Author(s):  
I.H. Stairs ◽  
S.E. Thorsett ◽  
J.H. Taylor ◽  
Z. Arzoumanian

We present the results of recent Arecibo observations of the relativistic double-neutron-star binary PSR B1534+12. The timing solution includes measurements of five post-Keplerian orbital parameters, whose values agree well with the predictions of general relativity. The observations show that the pulse profile is evolving secularly at both 1400 MHz and 430 MHz. This effect is similar to that seen in PSR B1913+16, and is almost certainly due to general relativistic precession of the pulsar's spin axis. We also present high-quality polarimetric profiles at both observing frequencies.


2021 ◽  
Vol 502 (2) ◽  
pp. 1843-1855
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT We perform 3D general-relativistic magnetohydrodynamic simulations to model the jet break-out from the ejecta expected to be produced in a binary neutron-star merger. The structure of the relativistic outflow from the 3D simulation confirms our previous results from 2D simulations, namely, that a relativistic magnetized outflow breaking out from the merger ejecta exhibits a hollow core of θcore ≈ 4°, an opening angle of θjet ≳ 10°, and is accompanied by a wind of ejected matter that will contribute to the kilonova emission. We also compute the non-thermal afterglow emission of the relativistic outflow and fit it to the panchromatic afterglow from GRB170817A, together with the superluminal motion reported from VLBI observations. In this way, we deduce an observer angle of $\theta _{\rm obs}= 35.7^{\circ \, \, +1.8}_{\phantom{\circ \, \, }-2.2}$. We further compute the afterglow emission from the ejected matter and constrain the parameter space for a scenario in which the matter responsible for the thermal kilonova emission will also lead to a non-thermal emission yet to be observed.


Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. 201-206 ◽  
Author(s):  
K. De ◽  
M. M. Kasliwal ◽  
E. O. Ofek ◽  
T. J. Moriya ◽  
J. Burke ◽  
...  

Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems.


2008 ◽  
Author(s):  
Masaru Shibata ◽  
Keisuke Taniguchi ◽  
Koji Uryū ◽  
Ye-Fei Yuan ◽  
Xiang-Dong Li ◽  
...  

2016 ◽  
Vol 94 (4) ◽  
Author(s):  
Antonios Tsokaros ◽  
Bruno C. Mundim ◽  
Filippo Galeazzi ◽  
Luciano Rezzolla ◽  
Kōji Uryū

2011 ◽  
Vol 741 (1) ◽  
pp. 65 ◽  
Author(s):  
Martin Durant ◽  
Oleg Kargaltsev ◽  
Igor Volkov ◽  
George G. Pavlov

Author(s):  
Nils Andersson

This chapter provides a brief survey of gravitational-wave astronomy, including the recent recent breakthrough detection. It sets the stage for the rest of the book via simple back-of-the-envelope estimates for different sets of sources. The chapter also describes the first detection of a black hole merger (GW150914) as well as the first observed neutron star binary event (GW170817) and introduces some of the ideas required to understand these breakthroughs.


Sign in / Sign up

Export Citation Format

Share Document