scholarly journals Strong deflection limit of black hole gravitational lensing with arbitrary source distances

2007 ◽  
Vol 76 (8) ◽  
Author(s):  
V. Bozza ◽  
G. Scarpetta
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shao-Wen Wei ◽  
Yu-Xiao Liu ◽  
Chun-E Fu

The null geodesics and gravitational lensing in a nonsingular spacetime are investigated. According to the nature of the null geodesics, the spacetime is divided into several cases. In the weak deflection limit, we find the influence of the nonsingularity parameterqon the positions and magnifications of the images is negligible. In the strong deflection limit, the coefficients and observables for the gravitational lensing in a nonsingular black hole background and a weakly nonsingular spacetime are obtained. Comparing these results, we find that, in a weakly nonsingular spacetime, the relativistic images have smaller angular position and relative magnification but larger angular separation than those of a nonsingular black hole. These results might offer a way to probe the spacetime nonsingularity parameter and put a bound on it by the astronomical instruments in the near future.


2010 ◽  
Author(s):  
G. N. Gyulchev ◽  
S. S. Yazadjiev ◽  
Michail D. Todorov ◽  
Christo I. Christov

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole.


Universe ◽  
2017 ◽  
Vol 3 (3) ◽  
pp. 57 ◽  
Author(s):  
Gennady Bisnovatyi-Kogan ◽  
Oleg Tsupko

Author(s):  
Hasan El Moumni ◽  
Karima Masmar ◽  
Ali Övgün

In this paper, we study the gravitational lensing by some black hole classes within the non-linear electrodynamics in weak field limits. First, we calculate an optical geometry of the non-linear electrodynamics black hole then we use the Gauss-Bonnet theorem for finding deflection angle in weak field limits. The effect of non-linear electrodynamics on the deflection angle in leading order terms is studied. Furthermore, we discuss the effects of the plasma medium on the weak deflection angle.


Author(s):  
John A. Adam

This chapter returns to the subject of rainbows, offering some reflections based on the author's review of the book The Rainbow Bridge: Rainbows in Art, Myth, and Science by Raymond L. Lee, Jr. and Alistair B. Frase. In particular, it discusses various topics related to the rainbow, including historical descriptions of the rainbow, some common misperceptions about rainbows, theories of the rainbow, angular momentum, rainbow ray, and Airy functions. The chapter also considers ray optics, with emphasis on Luneberg inversion and gravitational lensing, Abel's integral equation, and the Luneberg lens. Finally, it explains the rainbow's connection with classical scattering and gravitational lensing, focusing on weak gravitational fields and the black hole lens.


Sign in / Sign up

Export Citation Format

Share Document