scholarly journals Note on rotating charged black holes in Einstein-Maxwell-Chern-Simons theory

2009 ◽  
Vol 79 (4) ◽  
Author(s):  
Alikram N. Aliev ◽  
Dilek K. Çiftçi
1999 ◽  
Vol 14 (04) ◽  
pp. 505-520 ◽  
Author(s):  
SHARMANTHIE FERNANDO ◽  
FREYDOON MANSOURI

We study anti-de Sitter black holes in 2 + 1 dimensions in terms of Chern–Simons gauge theory of the anti-de Sitter group coupled to a source. Taking the source to be an anti-de Sitter state specified by its Casimir invariants, we show how all the relevant features of the black hole are accounted for. The requirement that the source be a unitary representation leads to a discrete tower of excited states which provide a microscopic model for the black hole.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Dongmin Gang ◽  
Kiril Hristov ◽  
Valentin Reys

Abstract We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $$ \mathrm{\mathcal{R}} $$ ℛ . Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to constrain the two independent coefficients in the four-derivative supergravity Lagrangian. This in turn allows us to calculate the subleading terms in the large-N expansion of supersymmetric partition functions for an infinite class of three-dimensional $$ \mathcal{N} $$ N = 2 SCFTs of class $$ \mathrm{\mathcal{R}} $$ ℛ . We also determine the leading correction to the Bekenstein-Hawking entropy of asymptotically AdS4 black holes arising from wrapped M5-branes. In addition, we propose and test some conjectures about the perturbative partition function of Chern-Simons theory with complexified ADE gauge groups on closed hyperbolic three-manifolds.


2006 ◽  
Vol 21 (35) ◽  
pp. 2621-2635 ◽  
Author(s):  
JUTTA KUNZ ◽  
FRANCISCO NAVARRO-LÉRIDA

Stationary black holes in five-dimensional Einstein–Maxwell–Chern–Simons theory possess surprising properties. When considering the Chern–Simons coefficient λ as a parameter, two critical values of λ appear: the supergravity value λ SG = 1, and the value λ = 2. At λ = 1, supersymmetric black holes with vanishing horizon angular velocity, but finite angular momentum exist. As λ increases beyond λ SG a rotational instability arises, and counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. Thus supersymmetry is associated with the borderline between stability and instability. At λ = 2, rotating black holes with vanishing angular momentum emerge. Beyond λ = 2, black holes may possess a negative horizon mass, while their total mass is positive. Charged rotating black holes with vanishing gyromagnetic ratio appear, and black holes are no longer uniquely characterized by their global charges.


2015 ◽  
Vol 92 (4) ◽  
Author(s):  
Jose Luis Blázquez-Salcedo ◽  
Jutta Kunz ◽  
Francisco Navarro-Lérida ◽  
Eugen Radu

2015 ◽  
Vol 24 (09) ◽  
pp. 1542016
Author(s):  
Jose Luis Blázquez-Salcedo

We study five-dimensional black holes in Einstein–Maxwell–Chern–Simons theory with free Chern–Simons (CS) coupling parameter. We consider an event horizon with spherical topology, and both angular momenta of equal magnitude. In particular, we study extremal black holes, which can be used to obtain the boundary of the domain of existence. Above a critical value of the CS coupling constant we find nonstatic extremal solutions with vanishing angular momentum. These solutions form a sequence which can be labeled by the node number of the magnetic U(1) potential or the inertial dragging. As the node number increases, their mass converges to the mass of the extremal Reissner–Nordström solution. The near-horizon geometry of the solutions of this sequence is the same. In general not all near-horizon solutions are found as global solutions, and we show nonuniqueness between extremal solutions and nonextremal ones.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document