scholarly journals General properties of the gravitational wave spectrum from phase transitions

2009 ◽  
Vol 79 (8) ◽  
Author(s):  
Chiara Caprini ◽  
Ruth Durrer ◽  
Thomas Konstandin ◽  
Géraldine Servant
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer

Abstract In this paper, we investigate the dynamics of the confinement-deconfinement phase transition in a toy model where the walking dynamics is realized perturbatively. We study the properties of the phase transition focusing on the possible cosmological signatures it can provide. Interestingly the model is well under perturbative control only when the mass of the lightest field — the dilaton/scalon is much lighter than the rest of the fields and the phase transition proceeds slowly leading to strong signals in the stochastic gravitational wave spectrum.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Huai-Ke Guo ◽  
Kuver Sinha ◽  
Daniel Vagie ◽  
Graham White

Abstract Models of particle physics that feature phase transitions typically provide predictions for stochastic gravitational wave signals at future detectors and such predictions are used to delineate portions of the model parameter space that can be constrained. The question is: how precise are such predictions? Uncertainties enter in the calculation of the macroscopic thermal parameters and the dynamics of the phase transition itself. We calculate such uncertainties with increasing levels of sophistication in treating the phase transition dynamics. Currently, the highest level of diligence corresponds to careful treatments of the source lifetime; mean bubble separation; going beyond the bag model approximation in solving the hydrodynamics equations and explicitly calculating the fraction of energy in the fluid from these equations rather than using a fit; and including fits for the energy lost to vorticity modes and reheating effects. The lowest level of diligence incorporates none of these effects. We compute the percolation and nucleation temperatures, the mean bubble separation, the fluid velocity, and ultimately the gravitational wave spectrum corresponding to the level of highest diligence for three explicit examples: SMEFT, a dark sector Higgs model, and the real singlet-extended Standard Model (xSM). In each model, we contrast different levels of diligence in the calculation and find that the difference in the final predicted signal can be several orders of magnitude. Our results indicate that calculating the gravitational wave spectrum for particle physics models and deducing precise constraints on the parameter space of such models continues to remain very much a work in progress and warrants care.


Author(s):  
Marek Lewicki ◽  
Ville Vaskonen

AbstractWe study gravitational wave (GW) production in strongly supercooled cosmological phase transitions, taking particular care of models featuring a complex scalar field with a U(1) symmetric potential. We perform lattice simulations of two-bubble collisions to properly model the scalar field gradients, and compute the GW spectrum sourced by them using the thin-wall approximation in many-bubble simulations. We find that in the U(1) symmetric case the low-frequency spectrum is $$\propto \omega $$ ∝ ω whereas for a real scalar field it is $$\propto \omega ^3$$ ∝ ω 3 . In both cases the spectrum decays as $$\omega ^{-2}$$ ω - 2 at high frequencies.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 304
Author(s):  
Pauline Lerambert-Potin ◽  
José Antonio de Freitas Pacheco

The recent claim by the NANOGrav collaboration of a possible detection of an isotropic gravitational wave background stimulated a series of investigations searching for the origin of such a signal. The QCD phase transition appears as a natural candidate and in this paper the gravitational spectrum generated during the conversion of quarks into hadrons is calculated. Here, contrary to recent studies, equations of state for the quark-gluon plasma issued from the lattice approach were adopted. The duration of the transition, an important parameter affecting the amplitude of the gravitational wave spectrum, was estimated self-consistently with the dynamics of the universe controlled by the Einstein equations. The gravitational signal generated during the transition peaks around 0.28 μHz with amplitude of h02Ωgw≈7.6×10−11, being unable to explain the claimed NANOGrav signal. However, the expected QCD gravitational wave background could be detected by the planned spatial interferometer Big Bang Observer in its advanced version for frequencies above 1.0 mHz. This possible detection assumes that algorithms recently proposed will be able to disentangle the cosmological signal from that expected for the astrophysical background generated by black hole binaries.


2020 ◽  
Vol 2020 (06) ◽  
pp. 046-046 ◽  
Author(s):  
Valerie Domcke ◽  
Ryusuke Jinno ◽  
Henrique Rubira

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Tommi Alanne ◽  
Thomas Hugle ◽  
Moritz Platscher ◽  
Kai Schmitz

Sign in / Sign up

Export Citation Format

Share Document