scholarly journals Slowly rotating stars and black holes in dynamical Chern-Simons gravity

2011 ◽  
Vol 84 (12) ◽  
Author(s):  
Yacine Ali-Haïmoud ◽  
Yanbei Chen
2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shao-Jun Zhang

AbstractWe study massive scalar field perturbation on Kerr black holes in dynamical Chern–Simons gravity by performing a $$(2+1)$$ ( 2 + 1 ) -dimensional simulation. Object pictures of the wave dynamics in time domain are obtained. The tachyonic instability is found to always occur for any nonzero black hole spin and any scalar field mass as long as the coupling constant exceeds a critical value. The presence of the mass term suppresses or even quench the instability. The quantitative dependence of the onset of the tachyonic instability on the coupling constant, the scalar field mass and the black hole spin is given numerically.


2017 ◽  
Vol 942 ◽  
pp. 012003
Author(s):  
J Kunz ◽  
J L Blázquez-Salcedo ◽  
F Navarro-Lérida ◽  
E Radu
Keyword(s):  

2005 ◽  
Vol 8 ◽  
pp. 86-95
Author(s):  
L Baiotti ◽  
I Hawke ◽  
P J Montero ◽  
F L Löffler ◽  
L Rezzolla ◽  
...  

1999 ◽  
Vol 14 (04) ◽  
pp. 505-520 ◽  
Author(s):  
SHARMANTHIE FERNANDO ◽  
FREYDOON MANSOURI

We study anti-de Sitter black holes in 2 + 1 dimensions in terms of Chern–Simons gauge theory of the anti-de Sitter group coupled to a source. Taking the source to be an anti-de Sitter state specified by its Casimir invariants, we show how all the relevant features of the black hole are accounted for. The requirement that the source be a unitary representation leads to a discrete tower of excited states which provide a microscopic model for the black hole.


2008 ◽  
Vol 23 (22) ◽  
pp. 1801-1818 ◽  
Author(s):  
CECILIA GARRAFFO ◽  
GASTON GIRIBET

Lovelock theory is a natural extension of Einstein theory of gravity to higher dimensions, and it is of great interest in theoretical physics as it describes a wide class of models. In particular, it describes string theory inspired ultraviolet corrections to Einstein–Hilbert action, while admits the Einstein general relativity and the so-called Chern–Simons theories of gravity as particular cases. Here, we give an introduction to the black hole solutions of Lovelock theory and analyze their most important properties. These solutions can be regarded as generalizations of the Boulware–Deser solution of Einstein–Gauss–Bonnet gravity, which we discuss in detail here. We briefly discuss some recent progress in understanding these and other solutions, like topological black holes that represent black branes of the theory, and vacuum thin-shell wormhole-like geometries that connect two different asymptotically de Sitter spaces. We also make some comments on solutions with time-like naked singularities.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Laura Andrianopoli ◽  
Gaston Giribet ◽  
Darío López Díaz ◽  
Olivera Miskovic

Abstract We study static black hole solutions with locally spherical horizons coupled to non-Abelian field in $$ \mathcal{N} $$ N = 4 Chern-Simons AdS5 supergravity. They are governed by three parameters associated to the mass, axial torsion and amplitude of the internal soliton, and two ones to the gravitational hair. They describe geometries that can be a global AdS space, naked singularity or a (non-)extremal black hole. We analyze physical properties of two inequivalent asymptotically AdS solutions when the spatial section at radial infinity is either a 3-sphere or a projective 3-space. An important feature of these 3-parametric solutions is that they possess a topological structure including two SU(2) solitons that wind nontrivially around the black hole horizon, as characterized by the Pontryagin index. In the extremal black hole limit, the solitons’ strengths match and a soliton-antisoliton system unwinds. That limit admits both non-BPS and BPS configurations. For the latter, the pure gauge and non-pure gauge solutions preserve 1/2 and 1/16 of the original supersymmetries, respectively. In a general case, we compute conserved charges in Hamiltonian formalism, finding many similarities with standard supergravity black holes.


Sign in / Sign up

Export Citation Format

Share Document