Chiral symmetry of heavy-light scalar mesons withUA(1)symmetry breaking

2012 ◽  
Vol 86 (1) ◽  
Author(s):  
V. Dmitrašinović
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Yoshiki Kuroda ◽  
Masayasu Harada ◽  
Shinya Matsuzaki ◽  
Daisuke Jido

Abstract We propose a novel mechanism to reproduce the observed mass hierarchy for scalar mesons lighter than 1 GeV (called the inverse hierarchy), regarding them as mesons made of a quark and an anti-quark ($q\bar{q}$ mesons). The source is provided by the SU(3) flavor-symmetry breaking induced by the U(1) axial anomaly. In particular, the anomaly term including the explicit chiral symmetry breaking plays a significant role in the light scalar meson spectrum. To be concrete, we construct a linear sigma model for scalar mesons of $q\bar{q}$ type together with their pseudoscalar chiral partners, including an anomaly-induced explicit chiral symmetry-breaking term. We find that, due to the proposed mechanism, the inverse hierarchy, i.e., $m\left[ a_0 (980) \right] \simeq m\left[ f_0 (980) \right] > m \left[ K_0^\ast (700) \right] > m \left[ f_0(500) \right]$, is indeed realized. Consequently, the quark content of $f_0 (500)$ is dominated by the isoscalar $\bar uu+ \bar dd$ component, and $f_0 (980)$ by the strange quark bilinear one, $s\bar{s}$.


2007 ◽  
Vol 16 (02n03) ◽  
pp. 325-332 ◽  
Author(s):  
EDUARDO LÜTZ ◽  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
BARDO E. J. BODMANN ◽  
FERNANDO PILOTTO

On the basis of a chiral symmetry transformation, we predict an isovector component for the family of light scalar mesons, i.e. partners of the σ-meson. Such a contribution may be necessary to tune the equation of state of nuclear matter in order to comply with severe constraints from a recent analysis of observational macroscopic properties of neutron stars.


2020 ◽  
Vol 61 (4) ◽  
Author(s):  
Gernot Eichmann ◽  
Christian S. Fischer ◽  
Walter Heupel ◽  
Nico Santowsky ◽  
Paul C. Wallbott

AbstractIn this feature article we summarise and highlight aspects of the treatment of four-quark states with functional methods. Model approaches to those exotic mesons almost inevitably have to assume certain internal structures, e.g. by grouping quarks and antiquarks into (anti-)diquark clusters or heavy-light $$q{\bar{q}}$$ q q ¯ pairs. Functional methods using Dyson–Schwinger and Bethe–Salpeter equations can be formulated without such prejudice and therefore have the potential to put these assumptions to test and discriminate between such models. So far, functional methods have been used to study the light scalar-meson sector and the heavy-light sector with a pair of charmed and a pair of light quarks in different quantum number channels. For all these states, the dominant components in terms of internal two-body clustering have been identified. It turns out that chiral symmetry breaking plays an important role for the dominant clusters in the light meson sector (in particular for the scalar mesons) and that this property is carried over to the heavy-light sector. Diquark-antidiquark components, on the other hand, turn out to be almost negligible for most states with the exception of open-charm heavy-light exotics.


2019 ◽  
Vol 212 ◽  
pp. 03002
Author(s):  
N.N. Achasov ◽  
G.N. Shestakov

We discuss the isotopic symmetry breaking as a tool of studying the production mechanisms and nature of light scalar mesons. The anomalous isospin breaking effects can appear not only due to the $ a_0^0(980) - {f_0}(980) $ mixing, but also for any mechanism of the production of the $ \bar{K} $ pairs with a definite isospin in the S wave.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 122
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


Sign in / Sign up

Export Citation Format

Share Document