scholarly journals Propagation of gravitational waves in teleparallel gravity theories

2018 ◽  
Vol 98 (12) ◽  
Author(s):  
Manuel Hohmann ◽  
Martin Krššák ◽  
Christian Pfeifer ◽  
Ulbossyn Ualikhanova
2019 ◽  
Vol 99 (2) ◽  
Author(s):  
Manuel Hohmann ◽  
Christian Pfeifer ◽  
Ulbossyn Ualikhanova ◽  
Jackson Levi Said

2021 ◽  
Vol 2081 (1) ◽  
pp. 012002
Author(s):  
I V Fomin ◽  
S V Chervon

Abstract We consider cosmological models based on the generalized scalar-tensor gravity, which correspond to the observational constraints on the parameters of cosmological perturbations for any model’s parameters. The estimates of the energy density of relic gravitational waves for such a cosmological models were made. The possibility of direct detection of such a gravitational waves using modern and prospective methods was discussed as well.


2016 ◽  
Vol 13 (10) ◽  
pp. 1650119
Author(s):  
S. Nayeh ◽  
A. Latifi ◽  
S. Arbabi Bidgoli ◽  
M. Ghominejad

The equations for gravitational plane waves produced by a typical binary system as a solution of linear approximation of Einstein equations are derived. The dynamics of the corresponding gravitational field is analyzed in a four-dimensional space-time manifold, endowed with a metric and taking into account torsion. In this context, the geometrical reason of the existence of torsion due to the presence of gravitational waves (GW) is highlighted and the geodesic deviation is obtained taking into account both curvature and torsion. In a laser interferometer gravitational detector, the delay time between the arrivals of the two laser beams traveling back and forth along the two arms in presence of gravitational waves is interpreted from this point of view. This delay is calculated for the NS–NS binary pulsar (1913 + 16) in two specific orientations with respect to the experimental device, corresponding to different polarizations of gravitational waves. In the specific case of this example, it is shown that the results obtained in the context of the standard general relativity (GR) and in the framework of teleparallel gravity are equivalent.


2008 ◽  
Vol 23 (10) ◽  
pp. 1521-1535 ◽  
Author(s):  
CHRISTIAN CORDA

We show that from the R2 high order gravity theory it is possible to produce, in the linearized approach, particles which can be seen as massive modes of gravitational waves (GW's). The presence of the mass generates a longitudinal force in addition of the transverse one which is proper of the massless gravitational waves and the response an interferometer to the effect is computed. This could be, in principle, important to discriminate among the gravity theories. The presence of the mass could also have important applications in cosmology because the fact that gravitational waves can have mass could give a contribution to the dark matter of the Universe.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944020 ◽  
Author(s):  
S. Shankaranarayanan

General Relativity is a hugely successful description of gravitation. However, both theory and observations suggest that General Relativity might have significant classical and quantum corrections in the Strong Gravity regime. Testing the strong field limit of gravity is one of the main objectives of the future gravitational wave detectors. One way to detect strong gravity is through the polarization of gravitational waves. For quasi-normal modes of black-holes in General Relativity, the two polarization states of gravitational waves have the same amplitude and frequency spectrum. Using the principle of energy conservation, we show that the polarizations differ for modified gravity theories. We obtain a diagnostic parameter for polarization mismatch that provides a unique way to distinguish General Relativity and modified gravity theories in gravitational wave detectors.


Sign in / Sign up

Export Citation Format

Share Document