scholarly journals Role of mixed permutation symmetry sectors in the thermodynamic limit of critical three-level Lipkin-Meshkov-Glick atom models

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Manuel Calixto ◽  
Alberto Mayorgas ◽  
Julio Guerrero
2018 ◽  
Vol 27 (12) ◽  
pp. 1840003
Author(s):  
J. D. Vergados ◽  
D. Strottman

We discus the role of Quantum Chromodynamics (QCD) in low energy phenomena involving the color-spin symmetry of the quark model. We then combine it with orbital and isospin symmetry to obtain wave functions with the proper permutation symmetry, focusing on multi-quark systems.


2019 ◽  
Vol 116 (10) ◽  
pp. 1898-1906 ◽  
Author(s):  
Mudong Feng ◽  
Michael K. Gilson
Keyword(s):  

2004 ◽  
Vol 36 (04) ◽  
pp. 996-1020 ◽  
Author(s):  
Thierry Huillet

Throw n points sequentially and at random onto a unit circle and append a clockwise arc (or rod) of length s to each such point. The resulting random set (the free gas of rods) is a union of a random number of clusters with random sizes modelling a free deposition process on a one-dimensional substrate. A variant of this model is investigated in order to take into account the role of the disorder, θ > 0; this involves Dirichlet(θ) distributions. For such free deposition processes with disorder θ, we shall be interested in the occurrence times and probabilities, as n grows, of two specific types of configurations: those avoiding overlapping rods (the hard-rod gas) and those for which the largest gap is smaller than the rod length s (the packing gas). Special attention is paid to the thermodynamic limit when ns = ρ for some finite density ρ of points. The occurrence of parking configurations, those for which hard-rod and packing constraints are both fulfilled, is then studied. Finally, some aspects of these problems are investigated in the low-disorder limit θ ↓ 0 as n ↑ ∞ while nθ = γ > 0. Here, Poisson-Dirichlet(γ) partitions play some role.


2004 ◽  
Vol 36 (4) ◽  
pp. 996-1020 ◽  
Author(s):  
Thierry Huillet

Throw n points sequentially and at random onto a unit circle and append a clockwise arc (or rod) of length s to each such point. The resulting random set (the free gas of rods) is a union of a random number of clusters with random sizes modelling a free deposition process on a one-dimensional substrate. A variant of this model is investigated in order to take into account the role of the disorder, θ > 0; this involves Dirichlet(θ) distributions. For such free deposition processes with disorder θ, we shall be interested in the occurrence times and probabilities, as n grows, of two specific types of configurations: those avoiding overlapping rods (the hard-rod gas) and those for which the largest gap is smaller than the rod length s (the packing gas). Special attention is paid to the thermodynamic limit when ns = ρ for some finite density ρ of points. The occurrence of parking configurations, those for which hard-rod and packing constraints are both fulfilled, is then studied. Finally, some aspects of these problems are investigated in the low-disorder limit θ ↓ 0 as n ↑ ∞ while nθ = γ > 0. Here, Poisson-Dirichlet(γ) partitions play some role.


2018 ◽  
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

AbstractA number of enzymes reportedly exhibit enhanced diffusion in the presence of their substrates, with a Michaelis-Menten-like concentration dependence. Although no definite explanation of this phenomenon has emerged, a physical picture of enzyme self-propulsion using energy from the catalyzed reaction has been widely considered. Here, we present a kinematic and thermodynamic analysis of enzyme self-propulsion that is independent of any specific propulsion mechanism. Using this theory, along with biophysical data compiled for all enzymes so far shown to undergo enhanced diffusion, we show that the propulsion speed required to generate experimental levels of enhanced diffusion exceeds the speeds of well-known active biomolecules, such as myosin, by several orders of magnitude. Furthermore, the minimum power dissipation required to account for enzyme enhanced diffusion by self-propulsion markedly exceeds the chemical power available from enzyme-catalyzed reactions. Alternative explanations for the observation of enhanced enzyme diffusion therefore merit stronger consideration.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 737 ◽  
Author(s):  
Andreas Schlatter

We show that probabilities in quantum physics can be derived from permutation-symmetry and the principle of indifference. We then connect unitary-symmetry to the concept of “time” and define a thermal time-flow by symmetry breaking. Finally, we discuss the coexistence of quantum physics and relativity theory by making use of the thermal time-flow.


2013 ◽  
Vol 10 (88) ◽  
pp. 20130651 ◽  
Author(s):  
D. De Tommasi ◽  
N. Millardi ◽  
G. Puglisi ◽  
G. Saccomandi

We propose a simple approach, based on the minimization of the total (entropic plus unfolding) energy of a two-state system, to describe the unfolding of multi-domain macromolecules (proteins, silks, polysaccharides, nanopolymers). The model is fully analytical and enlightens the role of the different energetic components regulating the unfolding evolution. As an explicit example, we compare the analytical results with a titin atomic force microscopy stretch-induced unfolding experiment showing the ability of the model to quantitatively reproduce the experimental behaviour. In the thermodynamic limit, the sawtooth force–elongation unfolding curve degenerates to a constant force unfolding plateau.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document