scholarly journals A Thermodynamic Limit on the Role of Self-Propulsion in Enhanced Enzyme Diffusion

2018 ◽  
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

AbstractA number of enzymes reportedly exhibit enhanced diffusion in the presence of their substrates, with a Michaelis-Menten-like concentration dependence. Although no definite explanation of this phenomenon has emerged, a physical picture of enzyme self-propulsion using energy from the catalyzed reaction has been widely considered. Here, we present a kinematic and thermodynamic analysis of enzyme self-propulsion that is independent of any specific propulsion mechanism. Using this theory, along with biophysical data compiled for all enzymes so far shown to undergo enhanced diffusion, we show that the propulsion speed required to generate experimental levels of enhanced diffusion exceeds the speeds of well-known active biomolecules, such as myosin, by several orders of magnitude. Furthermore, the minimum power dissipation required to account for enzyme enhanced diffusion by self-propulsion markedly exceeds the chemical power available from enzyme-catalyzed reactions. Alternative explanations for the observation of enhanced enzyme diffusion therefore merit stronger consideration.

2009 ◽  
Vol 81 (4) ◽  
pp. 571-583 ◽  
Author(s):  
Charles L. Perrin

A classic question regarding hydrogen bonds (H-bonds) concerns their symmetry. Is the hydrogen centered or is it closer to one donor and jumping between them? These possibilities correspond to single- and double-well potentials, respectively. The NMR method of isotopic perturbation can answer this question. It is illustrated with 3-hydroxy-2-phenylpropenal and then applied to dicarboxylate monoanions. The 18O-induced 13C NMR splittings signify that their intramolecular H-bonds are asymmetric and that each species is a pair of tautomers, not a single symmetric structure, even though maleate and phthalate are symmetric in crystals. The asymmetry is seen across a wide range of solvents and a wide variety of monoanions, including 2,3-di-tert-butylsuccinate and zwitterionic phthalates. Asymmetry is also seen in monoprotonated 1,8-bis(dimethylamino)naphthalenediamines, N,N'-diaryl-6-aminofulvene-2-aldimines, and 6-hydroxy-2-formylfulvene. The asymmetry is attributed to the disorder of the local environment, establishing an equilibrium between solvatomers. The broader implications of these results regarding the role of solvation in breaking symmetry are discussed. It was prudent to confirm a secondary deuterium isotope effect (IE) on amine basicity by NMR titration of a mixture of PhCH2NH2 and PhCHDNH2. The IE is of stereoelectronic origin. It is proposed that symmetric H-bonds can be observed in crystals but not in solution because a disordered environment induces asymmetry, whereas a crystal can guarantee a symmetric environment. The implications for the controversial role of low-barrier H-bonds in enzyme-catalyzed reactions are discussed.


2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis--Menten reaction mechanism. The sequential reaction consists of a single-substrate, single-enzyme non-observable reaction followed by another single-substrate, single-enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis--Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis--Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis-Menten reaction mechanism. The sequential reaction consists of a single-substrate, single enzyme non-observable reaction followed by another single-substrate, single enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis-Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis-Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


2018 ◽  
Author(s):  
Timothy Newhouse ◽  
Daria E. Kim ◽  
Joshua E. Zweig

The diverse molecular architectures of terpene natural products are assembled by exquisite enzyme-catalyzed reactions. Successful recapitulation of these transformations using chemical synthesis is hard to predict from first principles and therefore challenging to execute. A means of evaluating the feasibility of such chemical reactions would greatly enable the development of concise syntheses of complex small molecules. Herein, we report the computational analysis of the energetic favorability of a key bio-inspired transformation, which we use to inform our synthetic strategy. This approach was applied to synthesize two constituents of the historically challenging indole diterpenoid class, resulting in a concise route to (–)-paspaline A in 9 steps from commercially available materials and the first pathway to and structural confirmation of emindole PB in 13 steps. This work highlights how traditional retrosynthetic design can be augmented with quantum chemical calculations to reveal energetically feasible synthetic disconnections, minimizing time-consuming and expensive empirical evaluation.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Marc Feuermann ◽  
Emmanuel Boutet ◽  
Anne Morgat ◽  
Kristian Axelsen ◽  
Parit Bansal ◽  
...  

The UniProt Knowledgebase UniProtKB is a comprehensive, high-quality, and freely accessible resource of protein sequences and functional annotation that covers genomes and proteomes from tens of thousands of taxa, including a broad range of plants and microorganisms producing natural products of medical, nutritional, and agronomical interest. Here we describe work that enhances the utility of UniProtKB as a support for both the study of natural products and for their discovery. The foundation of this work is an improved representation of natural product metabolism in UniProtKB using Rhea, an expert-curated knowledgebase of biochemical reactions, that is built on the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Knowledge of natural products and precursors is captured in ChEBI, enzyme-catalyzed reactions in Rhea, and enzymes in UniProtKB/Swiss-Prot, thereby linking chemical structure data directly to protein knowledge. We provide a practical demonstration of how users can search UniProtKB for protein knowledge relevant to natural products through interactive or programmatic queries using metabolite names and synonyms, chemical identifiers, chemical classes, and chemical structures and show how to federate UniProtKB with other data and knowledge resources and tools using semantic web technologies such as RDF and SPARQL. All UniProtKB data are freely available for download in a broad range of formats for users to further mine or exploit as an annotation source, to enrich other natural product datasets and databases.


ChemInform ◽  
2012 ◽  
Vol 43 (29) ◽  
pp. no-no
Author(s):  
Richard Lonsdale ◽  
Jeremy N. Harvey ◽  
Adrian J. Mulholland

Sign in / Sign up

Export Citation Format

Share Document