Dense plasma microfield nonuniformity

1997 ◽  
Vol 55 (5) ◽  
pp. 6289-6292 ◽  
Author(s):  
M. S. Murillo ◽  
D. P. Kilcrease ◽  
L. A. Collins
Keyword(s):  
Author(s):  
E. L. Wolf

Protons in the Sun’s core are a dense plasma allowing fusion events where two protons initially join to produce a deuteron. Eventually this leads to alpha particles, the mass-four nucleus of helium, releasing kinetic energy. Schrodinger’s equation allows particles to penetrate classically forbidden Coulomb barriers with small but important probabilities. The approximation known as Wentzel–Kramers–Brillouin (WKB) is used by Gamow to predict the rate of proton–proton fusion in the Sun, shown to be in agreement with measurements. A simplified formula is given for the power density due to fusion in the plasma constituting the Sun’s core. The properties of atomic nuclei are briefly summarized.


2021 ◽  
Vol 11 (15) ◽  
pp. 6919
Author(s):  
Majid Masnavi ◽  
Martin Richardson

A series of experiments is described which were conducted to measure the absolute spectral irradiances of laser plasmas created from metal targets over the wavelength region of 123–164 nm by two separate 1.0 μm lasers, i.e., using 100 Hz, 10 ns, 2–20 kHz, 60–100 ns full-width-at-half-maximum pulses. A maximum radiation conversion efficiency of ≈ 3%/2πsr is measured over a wavelength region from ≈ 125 to 160 nm. A developed collisional-radiative solver and radiation-hydrodynamics simulations in comparison to the spectra detected by the Seya–Namioka-type monochromator reveal the strong broadband experimental radiations which mainly originate from bound–bound transitions of low-ionized charges superimposed on a strong continuum from a dense plasma with an electron temperature of less than 10 eV.


2021 ◽  
Vol 28 (7) ◽  
pp. 072302
Author(s):  
Lucas J. Stanek ◽  
Michael S. Murillo
Keyword(s):  

2013 ◽  
Vol 8 (S300) ◽  
pp. 30-39 ◽  
Author(s):  
J. L. Ballester

AbstractQuiescent solar prominences are cool and dense plasma clouds located inside the hot and less dense solar corona. They are highly dynamic structures displaying flows, instabilities, oscillatory motions, etc. The oscillations have been mostly interpreted in terms of magnetohydrodynamic (MHD) waves, which has allowed to perform prominence seismology as a tool to determine prominence physical parameters difficult to measure. Here, several prominence seismology applications to large and small amplitude oscillations are reviewed.


2014 ◽  
Vol 508 ◽  
pp. 012006 ◽  
Author(s):  
J Badziak ◽  
S Jabloński ◽  
T Pisarczyk ◽  
T Chodukowski ◽  
P Parys ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document