Quantum mechanical representation of acoustic streaming and acoustic radiation pressure

2001 ◽  
Vol 64 (2) ◽  
Author(s):  
Masanori Sato ◽  
Toshitaka Fujii
2020 ◽  
Vol 52 (1) ◽  
pp. 205-234 ◽  
Author(s):  
M. Baudoin ◽  
J.-L. Thomas

Acoustic tweezers powerfully enable the contactless collective or selective manipulation of microscopic objects. Trapping is achieved without pretagging, with forces several orders of magnitude larger than optical tweezers at the same input power, limiting spurious heating and enabling damage-free displacement and orientation of biological samples. In addition, the availability of acoustical coherent sources from kilo- to gigahertz frequencies enables the manipulation of a wide spectrum of particle sizes. After an introduction of the key physical concepts behind fluid and particle manipulation with acoustic radiation pressure and acoustic streaming, we highlight the emergence of specific wave fields, called acoustical vortices, as a means to manipulate particles selectively and in three dimensions with one-sided tweezers. These acoustic vortices can also be used to generate hydrodynamic vortices whose topology is controlled by the topology of the wave. We conclude with an outlook on the field's future directions.


Sign in / Sign up

Export Citation Format

Share Document