scholarly journals Acoustic Tweezers for Particle and Fluid Micromanipulation

2020 ◽  
Vol 52 (1) ◽  
pp. 205-234 ◽  
Author(s):  
M. Baudoin ◽  
J.-L. Thomas

Acoustic tweezers powerfully enable the contactless collective or selective manipulation of microscopic objects. Trapping is achieved without pretagging, with forces several orders of magnitude larger than optical tweezers at the same input power, limiting spurious heating and enabling damage-free displacement and orientation of biological samples. In addition, the availability of acoustical coherent sources from kilo- to gigahertz frequencies enables the manipulation of a wide spectrum of particle sizes. After an introduction of the key physical concepts behind fluid and particle manipulation with acoustic radiation pressure and acoustic streaming, we highlight the emergence of specific wave fields, called acoustical vortices, as a means to manipulate particles selectively and in three dimensions with one-sided tweezers. These acoustic vortices can also be used to generate hydrodynamic vortices whose topology is controlled by the topology of the wave. We conclude with an outlook on the field's future directions.

2018 ◽  
Vol 116 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Asier Marzo ◽  
Bruce W. Drinkwater

Acoustic tweezers use sound radiation forces to manipulate matter without contact. They provide unique characteristics compared with the more established optical tweezers, such as higher trapping forces per unit input power and the ability to manipulate objects from the micrometer to the centimeter scale. They also enable the trapping of a wide range of sample materials in various media. A dramatic advancement in optical tweezers was the development of holographic optical tweezers (HOT) which enabled the independent manipulation of multiple particles leading to applications such as the assembly of 3D microstructures and the probing of soft matter. Now, 20 years after the development of HOT, we present the realization of holographic acoustic tweezers (HAT). We experimentally demonstrate a 40-kHz airborne HAT system implemented using two 256-emitter phased arrays and manipulate individually up to 25 millimetric particles simultaneously. We show that the maximum trapping forces are achieved once the emitting array satisfies Nyquist sampling and an emission phase discretization below π/8 radians. When considered on the scale of a wavelength, HAT provides similar manipulation capabilities as HOT while retaining its unique characteristics. The examples shown here suggest the future use of HAT for novel forms of displays in which the objects are made of physical levitating voxels, assembly processes in the micrometer and millimetric scale, as well as positioning and orientation of multiple objects which could lead to biomedical applications.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 419
Author(s):  
Naiqing Zhang ◽  
Yue Wen ◽  
James Friend

High frequency (MHz-order) surface acoustic waves (SAW) are able to generate intense fluid flow from the attenuation of acoustic radiation in viscous fluids as acoustic streaming. Though such flows are known to produce a force upon the fluid and an equivalent and opposing force upon the object producing the acoustic radiation, there is no convenient method for measuring this force. We describe a new method to accomplish this aim, noting the potential of these devices in providing essentially silent underwater propulsion by virtue of their use of the sound itself to generate fluid momentum flux. Our example employs a 40 MHz SAW device as a pendulum bob while immersed in a fluid, measuring a 1.5 mN propulsion force from an input power of 5 W power to the SAW device. Supporting details regarding the acoustic streaming profile via particle image velocimetry and an associated theoretical model are provided to aid in the determination of the propulsion force knowing the applied power and fluid characteristics. Finally, a simple model is provided to aid the selection of the acoustic device size to maximize the propulsion force per unit device area, a key figure of merit in underwater propulsion devices. Using this model, a maximum force of approximately 10 mN/cm 2 was obtained from 1 W input power using 40 MHz SAW in water and producing a power efficiency of approximately 50%. Given the advantages of this technology in silent propulsion with such large efficiency and propulsion force per unit volume, it seems likely this method will be beneficial in propelling small autonomous submersibles.


2021 ◽  
Vol 7 (2) ◽  
pp. eabc7885
Author(s):  
Haodong Zhu ◽  
Peiran Zhang ◽  
Zhanwei Zhong ◽  
Jianping Xia ◽  
Joseph Rich ◽  
...  

Acoustics-based tweezers provide a unique toolset for contactless, label-free, and precise manipulation of bioparticles and bioanalytes. Most acoustic tweezers rely on acoustic radiation forces; however, the accompanying acoustic streaming often generates unpredictable effects due to its nonlinear nature and high sensitivity to the three-dimensional boundary conditions. Here, we demonstrate acoustohydrodynamic tweezers, which generate stable, symmetric pairs of vortices to create hydrodynamic traps for object manipulation. These stable vortices enable predictable control of a flow field, which translates into controlled motion of droplets or particles on the operating surface. We built a programmable droplet-handling platform to demonstrate the basic functions of planar-omnidirectional droplet transport, merging droplets, and in situ mixing via a sequential cascade of biochemical reactions. Our acoustohydrodynamic tweezers enables improved control of acoustic streaming and demonstrates a previously unidentified method for contact-free manipulation of bioanalytes and digitalized liquid handling based on a compact and scalable functional unit.


ACS Nano ◽  
2013 ◽  
Vol 7 (10) ◽  
pp. 8794-8800 ◽  
Author(s):  
Zijie Yan ◽  
Matthew Pelton ◽  
Leonid Vigderman ◽  
Eugene R. Zubarev ◽  
Norbert F. Scherer

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Sean S. Kohles ◽  
Yu Liang ◽  
Asit K. Saha

Controlled external chemomechanical stimuli have been shown to influence cellular and tissue regeneration/degeneration, especially with regards to distinct disease sequelae or health maintenance. Recently, a unique three-dimensional stress state was mathematically derived to describe the experimental stresses applied to isolated living cells suspended in an optohydrodynamic trap (optical tweezers combined with microfluidics). These formulae were previously developed in two and three dimensions from the fundamental equations describing creeping flows past a suspended sphere. The objective of the current study is to determine the full-field cellular strain response due to the applied three-dimensional stress environment through a multiphysics computational simulation. In this investigation, the multiscale cytoskeletal structures are modeled as homogeneous, isotropic, and linearly elastic. The resulting computational biophysics can be directly compared with experimental strain measurements, other modeling interpretations of cellular mechanics including the liquid drop theory, and biokinetic models of biomolecule dynamics. The described multiphysics computational framework will facilitate more realistic cytoskeletal model interpretations, whose intracellular structures can be distinctly defined, including the cellular membrane substructures, nucleus, and organelles.


Sign in / Sign up

Export Citation Format

Share Document