Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids

2010 ◽  
Vol 81 (2) ◽  
Author(s):  
Eric C. Dykeman ◽  
Otto F. Sankey
1982 ◽  
Vol 60 (9) ◽  
pp. 1358-1364 ◽  
Author(s):  
N. H. Rich ◽  
M. J. Clouter ◽  
H. Kiefte ◽  
S. F. Ahmad

Low frequency Raman spectra of single crystals of orientationally disordered phases of oxygen, nitrogen, and carbon monoxide, and spectra of those substances as liquids show two linear segments in semi-log plots. Slopes of the higher frequency segments are nearly equal for all cases; slopes of the lower frequency segments are particular to the substance and are nearly the same in both liquid and crystal for O2 and CO. Spectra of single crystals of argon doped with O2, N2, or CO show two distinct features superimposed on a sloping background. Impurity molecule reorientation apparently accounts satisfactorily for all spectral features, but translation–rotation coupling may allow a contribution to the higher frequency feature arising from a local phonon mode in argon.


1970 ◽  
Vol 10 (6) ◽  
pp. 1005-1007
Author(s):  
A. V. Korshunov ◽  
V. F. Shabanov ◽  
V. E. Volkov

1993 ◽  
Vol 24 (8) ◽  
pp. 527-532 ◽  
Author(s):  
Fumitoshi Kaneko ◽  
Masamichi Kobayashi ◽  
Hirotoshi Sakashita

2019 ◽  
Vol 127 (10) ◽  
pp. 541
Author(s):  
В.С. Горелик ◽  
М.Ф. Умаров ◽  
Ю.П. Войнов

AbstractRaman spectra of tryptophan and tyrosine polycrystals have been analyzed in a wide spectral range by fiber-optic spectroscopy. The Raman spectra have been recorded with a BWS465-785H spectrometer in the spectral range of 0–2700 cm^–1 using a 785-nm cw laser as an excitation source. Parameters of the Raman spectra are compared for three crystalline phase modifications of aromatic amino acids: left-handed, right-handed, and racemic phase. The presence of strong Raman satellites, the characteristics of which change depending on the type of the chiral phase state of amino acid, is found in the low-frequency Raman spectra of tryptophan and tyrosine amino acid lattices. The results obtained can be used for monitoring the chiral purity of bioactive preparations containing amino acids.


Sign in / Sign up

Export Citation Format

Share Document