scholarly journals Bulk phase behavior of binary hard platelet mixtures from density functional theory

2010 ◽  
Vol 81 (4) ◽  
Author(s):  
Jonathan Phillips ◽  
Matthias Schmidt
Soft Matter ◽  
2022 ◽  
Author(s):  
Sergei A Egorov

A Density Functional Theory study is performed to analyze both bulk and interfacial properties of solvent-polymer binary mixtures. The effects of increasing polymer chain length on the bulk phase diagram...


Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Bley ◽  
Joachim Dzubiella ◽  
Arturo Moncho Jorda

We employ reactive dynamical density functional theory (R-DDFT) and reactive Brownian dynamics (R-BD) simulations to study the non-equilibrium structure and phase behavior of an active dispersion of soft Gaussian colloids...


SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1096-1109 ◽  
Author(s):  
Zhidong Li ◽  
Zhehui Jin ◽  
Abbas Firoozabadi

Summary Phase behavior in shale remains a mystery because of various complexities and effects. One complexity is from nanopores, in which phase behavior is significantly affected by the interaction between the pore surfaces and fluid molecules. The result is the heterogeneous distribution of molecules that cannot be described by bulk-phase thermodynamic approaches. Statistical thermodynamic methods can describe the phase behavior in nanopores. In this work, we apply an engineering density functional theory (DFT) combined with the Peng-Robinson equation of state (EOS) to investigate the adsorption and phase behavior of pure substances and mixtures in nanopores, and include the characterization of pore structure of porous media. The nanopores are represented by carbon-slit pores each consisting of two parallel planar-infinite structureless graphite surfaces. The porous media are activated carbons and dry coal, each modeled by an array of polydisperse carbon-slit pores. We study the influence of multiple factors on phase transitions of various pure light species and their mixtures in nanopores. We find that capillary condensation and hysteresis are more likely in heavier hydrocarbons, at lower temperatures, and in smaller pores. For pure hydrocarbons in nanopores, the phase change always occurs below the critical temperature and saturation pressure. For mixtures in nanopores, there may be a phase change above the cricondentherm. We characterize the pore structure of porous media to obtain the pore-size distribution (PSD), surface area (SA), and pore volume (PV) on the basis of the measured adsorption isotherms of pure substances. Then, we use the computed PSD to predict the adsorption of mixtures in porous media. There is agreement between the experiments and our predictions. This work is in the direction of phase-behavior modeling and understanding in shale media.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1784-1797 ◽  
Author(s):  
Yueliang Liu ◽  
Zhehui Jin ◽  
Huazhou Andy Li

Summary The Peng-Robinson equation of state (PR-EOS) (Robinson and Peng 1978) with capillary effect has been used extensively to describe the phase behavior of hydrocarbons under nanoconfinement in shale reservoirs. In nanopores, surface adsorption may be significant, and molecular distribution is heterogeneous. Although the PR-EOS cannot consider these effects, statistical thermodynamic approaches such as density-functional theory (DFT) can explicitly consider the intermolecular and fluid/surface interactions. In this work, we compare the phase behavior of pure hydrocarbons and mixtures in nanopores from the PR-EOS with capillary effect and engineering DFT. We apply the Young-Laplace (YL) equation, assuming zero contact angle to calculate the capillary pressure in the PR-EOS with capillary effect. On the other hand, we extend the PR-EOS to inhomogeneous conditions with weighted-density approximation (WDA) in engineering DFT. For pure components, both approaches predict that the dewpoint temperature increases in hydrocarbon-wet nanopores. Although engineering DFT predicts that the confined dewpoint temperature approaches bulk saturation point when pore size approaches 30 nm, the saturation point obtained from the PR-EOS with capillary effect approaches bulk only when the pore size is as large as 1000 nm. With engineering DFT, the critical points in nanopores deviate from those in bulk, but no change is observed from the PR-EOS with capillary-effect model. The difference on the dewpoint temperature between the PR-EOS with capillary effect and engineering DFT decreases as the system pressure approaches the critical pressure. At low-pressure conditions, the PR-EOS with capillary-effect model becomes unreliable. For binary mixtures, both approaches predict that the lower dewpoint decreases and the upper dewpoint increases. More interestingly, phase transition can still occur when the system temperature is higher than the bulk cricondentherm point. Engineering DFT predicts that the confined lower dewpoint approaches bulk when pore size approaches 20 nm, whereas the dewpoint obtained from the PR-EOS with capillary effect approaches bulk only when the pore size is as large as 100 nm. This work illustrates that assuming homogeneous distributions in nanopores may not be appropriate to predict the phase behavior of hydrocarbons under nanoconfinement.


Sign in / Sign up

Export Citation Format

Share Document