slit pores
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 30)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Yanshuang Kang ◽  
Haijun Wang ◽  
Zongli Sun

Abstract Based on free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties, including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for design and characterization of novel materials.


2021 ◽  
Vol 22 (20) ◽  
pp. 11050
Author(s):  
Horacio Serna ◽  
Wojciech T. Góźdź ◽  
Eva G. Noya

Systems with short-range attractive and long-range repulsive interactions can form periodic modulated phases at low temperatures, such as cluster-crystal, hexagonal, lamellar and bicontinuous gyroid phases. These periodic microphases should be stable regardless of the physical origin of the interactions. However, they have not yet been experimentally observed in colloidal systems, where, in principle, the interactions can be tuned by modifying the colloidal solution. Our goal is to investigate whether the formation of some of these periodic microphases can be promoted by confinement in narrow slit pores. By performing simulations of a simple model with competing interactions, we find that both the cluster-crystal and lamellar phases can be stable up to higher temperatures than in the bulk system, whereas the hexagonal phase is destabilised at temperatures somewhat lower than in bulk. Besides, we observed that the internal ordering of the lamellar phase can be modified by changing the pore width. Interestingly, for sufficiently wide pores to host three lamellae, there is a range of temperatures for which the two lamellae close to the walls are internally ordered, whereas the one at the centre of the pore remains internally disordered. We also find that particle diffusion under confinement exhibits a complex dependence with the pore width and with the density, obtaining larger and smaller values of the diffusion coefficient than in the corresponding bulk system.


2021 ◽  
Vol 155 (7) ◽  
pp. 074702
Author(s):  
Tianmu Yuan ◽  
Amir H. Farmahini ◽  
Lev Sarkisov

2021 ◽  
Vol 154 (10) ◽  
pp. 104503
Author(s):  
Hasini S. Senanayake ◽  
Jeffery A. Greathouse ◽  
Anastasia G. Ilgen ◽  
Ward H. Thompson

Sign in / Sign up

Export Citation Format

Share Document