scholarly journals Finite-size scaling for the glass transition: The role of a static length scale

2012 ◽  
Vol 86 (6) ◽  
Author(s):  
Smarajit Karmakar ◽  
Itamar Procaccia
2019 ◽  
pp. 111-176
Author(s):  
Hans-Peter Eckle

Interacting many-particle systems may undergo phase transitions and exhibit critical phenomena in the limit of infinite system size, while the precursors of these phenomena are studied in the theory of finite-size scaling. After surveying the basic notions of phases, phase diagrams, and phase transitions, this chapter focuses on critical behaviour at a second-order phase transition. The Landau-Ginzburg theory and the concept of scaling prepare readers for an elementary introduction to the concepts of the renormalization group, followed by an introduction into the field of quantum phase transitions where quantum fluctuations take over the role of thermal fluctuations.


2016 ◽  
Vol 116 (11) ◽  
Author(s):  
Emilio Flores-Sola ◽  
Bertrand Berche ◽  
Ralph Kenna ◽  
Martin Weigel

2003 ◽  
Vol 14 (07) ◽  
pp. 945-954 ◽  
Author(s):  
MEHMET DİLAVER ◽  
SEMRA GÜNDÜÇ ◽  
MERAL AYDIN ◽  
YİĞİT GÜNDÜÇ

In this work we have considered the Taylor series expansion of the dynamic scaling relation of the magnetization with respect to small initial magnetization values in order to study the dynamic scaling behavior of two- and three-dimensional Ising models. We have used the literature values of the critical exponents and of the new dynamic exponent x0 to observe the dynamic finite-size scaling behavior of the time evolution of the magnetization during early stages of the Monte Carlo simulation. For the three-dimensional Ising model we have also presented that this method opens the possibility of calculating z and x0 separately. Our results show good agreement with the literature values. Measurements done on lattices with different sizes seem to give very good scaling.


Sign in / Sign up

Export Citation Format

Share Document