upper critical dimension
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 185 (2) ◽  
Author(s):  
Robert Fitzner ◽  
Remco van der Hofstad

AbstractWe study lattice trees (LTs) and animals (LAs) on the nearest-neighbor lattice $${\mathbb {Z}}^d$$ Z d in high dimensions. We prove that LTs and LAs display mean-field behavior above dimension $$16$$ 16 and $$17$$ 17 , respectively. Such results have previously been obtained by Hara and Slade in sufficiently high dimensions. The dimension above which their results apply was not yet specified. We rely on the non-backtracking lace expansion (NoBLE) method that we have recently developed. The NoBLE makes use of an alternative lace expansion for LAs and LTs that perturbs around non-backtracking random walk rather than around simple random walk, leading to smaller corrections. The NoBLE method then provides a careful computational analysis that improves the dimension above which the result applies. Universality arguments predict that the upper critical dimension, above which our results apply, is equal to $$d_c=8$$ d c = 8 for both models, as is known for sufficiently spread-out models by the results of Hara and Slade mentioned earlier. The main ingredients in this paper are (a) a derivation of a non-backtracking lace expansion for the LT and LA two-point functions; (b) bounds on the non-backtracking lace-expansion coefficients, thus showing that our general NoBLE methodology can be applied; and (c) sharp numerical bounds on the coefficients. Our proof is complemented by a computer-assisted numerical analysis that verifies that the necessary bounds used in the NoBLE are satisfied.


Author(s):  
Tom Hutchcroft

AbstractWe study long-range Bernoulli percolation on $${\mathbb {Z}}^d$$ Z d in which each two vertices x and y are connected by an edge with probability $$1-\exp (-\beta \Vert x-y\Vert ^{-d-\alpha })$$ 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger (Commun. Math. Phys., 2002) that if $$0<\alpha <d$$ 0 < α < d then there is no infinite cluster at the critical parameter $$\beta _c$$ β c . We give a new, quantitative proof of this theorem establishing the power-law upper bound $$\begin{aligned} {\mathbf {P}}_{\beta _c}\bigl (|K|\ge n\bigr ) \le C n^{-(d-\alpha )/(2d+\alpha )} \end{aligned}$$ P β c ( | K | ≥ n ) ≤ C n - ( d - α ) / ( 2 d + α ) for every $$n\ge 1$$ n ≥ 1 , where K is the cluster of the origin. We believe that this is the first rigorous power-law upper bound for a Bernoulli percolation model that is neither planar nor expected to exhibit mean-field critical behaviour. As part of the proof, we establish a universal inequality implying that the maximum size of a cluster in percolation on any finite graph is of the same order as its mean with high probability. We apply this inequality to derive a new rigorous hyperscaling inequality $$(2-\eta )(\delta +1)\le d(\delta -1)$$ ( 2 - η ) ( δ + 1 ) ≤ d ( δ - 1 ) relating the cluster-volume exponent $$\delta $$ δ and two-point function exponent $$\eta $$ η .


Author(s):  
Jean Zinn-Justin

In preceding chapters, while deriving the scaling behaviour of correlation functions, we have always kept only the leading term in the critical region. We examine now the different corrections to the leading behaviour. For instance, when we have solved the renormalizaton group (RG) equations, so far, we have neglected the small deviation of the effective coupling constant from its fixed-point value. Moreover, to establish RG equations, we have neglected corrections subleading by powers of the cut-off, and effects of other couplings of higher canonical dimensions. Subleading terms related to the value of the effective coupling constant which give the leading corrections, at least near four dimensions, can easily be derived from the solutions of the renormalization group (RG) equations and are discussed first. The situations below and at four dimensions (the upper-critical dimension) have to be examined separately. The second type of corrections involves additional considerations and is examined in the second part of the chapter. The last section is devoted to one physics application, provided by systems with strong dipolar forces, which have 3 as upper-critical dimension.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marco Panero ◽  
Antonio Smecca

Abstract We present a high-precision Monte Carlo study of the classical Heisenberg model in four dimensions. We investigate the properties of monopole-like topological excitations that are enforced in the broken-symmetry phase by imposing suitable boundary conditions. We show that the corresponding magnetization and energy-density profiles are accurately predicted by previous analytical calculations derived in quantum field theory, while the scaling of the low-energy parameters of this description questions an interpretation in terms of particle excitations. We discuss the relevance of these findings and their possible experimental applications in condensed-matter physics.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Apratim Kaviraj ◽  
Slava Rychkov ◽  
Emilio Trevisani

Abstract We revisit perturbative RG analysis in the replicated Landau-Ginzburg description of the Random Field Ising Model near the upper critical dimension 6. Working in a field basis with manifest vicinity to a weakly-coupled Parisi-Sourlas supersymmetric fixed point (Cardy, 1985), we look for interactions which may destabilize the SUSY RG flow and lead to the loss of dimensional reduction. This problem is reduced to studying the anomalous dimensions of “leaders” — lowest dimension parts of Sn-invariant perturbations in the Cardy basis. Leader operators are classified as non-susy-writable, susy-writable or susy-null depending on their symmetry. Susy-writable leaders are additionally classified as belonging to superprimary multiplets transforming in particular OSp(d|2) representations. We enumerate all leaders up to 6d dimension ∆ = 12, and compute their perturbative anomalous dimensions (up to two loops). We thus identify two perturbations (with susy- null and non-susy-writable leaders) becoming relevant below a critical dimension dc ≈ 4.2 - 4.7. This supports the scenario that the SUSY fixed point exists for all 3 < d ⩽ 6, but becomes unstable for d < dc.


2021 ◽  
pp. 1-12
Author(s):  
Andrey Viktorovich Podlazov

I investigate the nature of the upper critical dimension for isotropic conservative sandpile models and calculate the emerging logarithmic corrections to power-law distributions. I check the results experimentally using the case of Manna model with the theoretical solution known for all statement starting from the two-dimensional one. In addition, based on this solution, I construct a non-trivial super-universal indicator for this model. It characterizes the distribution of avalanches by time the border of their region needs to pass its width.


Sign in / Sign up

Export Citation Format

Share Document