scholarly journals Nematic order in a simple-cubic lattice-spin model with full-ranged dipolar interactions

2016 ◽  
Vol 93 (5) ◽  
Author(s):  
Hassan Chamati ◽  
Silvano Romano
2011 ◽  
Vol 25 (12n13) ◽  
pp. 929-936 ◽  
Author(s):  
V. THANH NGO ◽  
D. TIEN HOANG ◽  
H. T. DIEP

The phase transition in frustrated spin systems is a fascinating subject in statistical physics. We show the result obtained by the Wang–Landau flat histogram Monte Carlo simulation on the phase transition in the fully frustrated simple cubic lattice with the Heisenberg spin model. The degeneracy of the ground state of this system is infinite with two continuous parameters. We find a clear first-order transition in contradiction with previous studies which have shown a second-order transition with unusual critical properties. The robustness of our calculations allows us to conclude this issue putting an end to the 20-year long uncertainty.


2014 ◽  
Vol 31 (7) ◽  
pp. 070503 ◽  
Author(s):  
Shun Wang ◽  
Zhi-Yuan Xie ◽  
Jing Chen ◽  
Bruce Normand ◽  
Tao Xiang

1990 ◽  
Vol 59 (5-6) ◽  
pp. 1397-1429 ◽  
Author(s):  
M. Fukugita ◽  
H. Mino ◽  
M. Okawa ◽  
A. Ukawa

1990 ◽  
Vol 195 ◽  
Author(s):  
L. F. Chen ◽  
Ping Sheng ◽  
B. Abeles ◽  
M. Y. Zhou

ABSTRACTElectrical conduction in granular metals is simulated by mapping the hopping conductance between pairs of metal grains onto a simple cubic lattice with bonds between neighbors. By considering a log-normal distribution of grain sizes and the effect of disorder potential, the numerically calculated network conductance exhibit clear deviation from simple activation. Plotting -log a vs. T-½, where σ denotes conductivity and T the temperature, gives good straight line behavior with slopes comparable to those measured experimentally. Our results are noted to differ from those of Adkins et al.


2017 ◽  
Vol 50 (21) ◽  
pp. 215601 ◽  
Author(s):  
Kai Ishihara ◽  
Maxime Pouokam ◽  
Atsumi Suzuki ◽  
Robert Scharein ◽  
Mariel Vazquez ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Hadey K. Mohamad

The magnetic properties of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising model with different anisotropies are investigated by using the mean-field approximation (MFA). In particular, the effect of magnetic anisotropies on the compensation phenomenon, acting on A-atoms and B-ones for the mixed-spin model, has been considered in a zero field. The free energy of a mixed-spin Ising ferrimagnetic system from MFA of the Hamiltonian is calculated. By minimizing the free energy, we obtain the equilibrium magnetizations and the compensation points. The phase diagram of the system in the anisotropy dependence of transition temperature has been discussed as well. Our results of this model predict the existence of many (two or three) compensation points in the ordered system on a simple cubic lattice.


2007 ◽  
Vol 76 (13) ◽  
Author(s):  
A. Tarasenko ◽  
L. Jastrabik ◽  
T. Müller

Sign in / Sign up

Export Citation Format

Share Document