Thermal conductance of one-dimensional materials calculated with typical lattice models

2016 ◽  
Vol 94 (5) ◽  
Author(s):  
Chunyi Zhang ◽  
Wei Kang ◽  
Jianxiang Wang
1999 ◽  
Vol 10 (06) ◽  
pp. 1025-1038 ◽  
Author(s):  
A. BENYOUSSEF ◽  
N. BOCCARA ◽  
H. CHAKIB ◽  
H. EZ-ZAHRAOUY

Lattice models describing the spatial spread of rabies among foxes are studied. In these models, the fox population is divided into three-species: susceptible (S), infected or incubating (I), and infectious or rabid (R). They are based on the fact that susceptible and incubating foxes are territorial while rabid foxes have lost their sense of direction and move erratically. Two different models are investigated: a one-dimensional coupled-map lattice model, and a two-dimensional automata network model. Both models take into account the short-range character of the infection process and the diffusive motion of rabid foxes. Numerical simulations show how the spatial distribution of rabies, and the speed of propagation of the epizootic front depend upon the carrying capacity of the environment and diffusion of rabid foxes out of their territory.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1319
Author(s):  
Adam Lipowski ◽  
António L. Ferreira ◽  
Dorota Lipowska

Using simulated annealing, we examine a bipartitioning of small worlds obtained by adding a fraction of randomly chosen links to a one-dimensional chain or a square lattice. Models defined on small worlds typically exhibit a mean-field behavior, regardless of the underlying lattice. Our work demonstrates that the bipartitioning of small worlds does depend on the underlying lattice. Simulations show that for one-dimensional small worlds, optimal partitions are finite size clusters for any fraction of additional links. In the two-dimensional case, we observe two regimes: when the fraction of additional links is sufficiently small, the optimal partitions have a stripe-like shape, which is lost for a larger number of additional links as optimal partitions become disordered. Some arguments, which interpret additional links as thermal excitations and refer to the thermodynamics of Ising models, suggest a qualitative explanation of such a behavior. The histogram of overlaps suggests that a replica symmetry is broken in a one-dimensional small world. In the two-dimensional case, the replica symmetry seems to hold, but with some additional degeneracy of stripe-like partitions.


2012 ◽  
Vol 83 (2) ◽  
pp. 024901 ◽  
Author(s):  
Matthew C. Wingert ◽  
Zack C. Y. Chen ◽  
Shooshin Kwon ◽  
Jie Xiang ◽  
Renkun Chen

2011 ◽  
Vol 375 (17) ◽  
pp. 1831-1838 ◽  
Author(s):  
Songshan Ma ◽  
Hui Xu ◽  
Honggui Deng ◽  
Bingchu Yang

2020 ◽  
Author(s):  
Penghua Ying ◽  
Jin Zhang ◽  
Yao Du ◽  
Zheng Zhong

In this paper, we conduct a comprehensive investigation on the thermal transport in one-dimensional (1D) van der Waals (vdW) heterostructures by using non-equilibrium molecular dynamics simulations. It is found that the boron nitride nanotube (BNNT) coating can increase the thermal conductance of inner carbon nanotube (CNT) base by 36%, while the molybdenum disulfide nanotube (<a>MSNT</a>) coating can reduce the thermal conductance by 47%. The different effects of BNNT and MSNT coatings on the thermal transport behaviors of 1D vdW heterostructures are explained by the competition mechanism between improved heat flux and increased temperature gradient in 1D vdW heterostructures. By taking CNT@BNNT@MSNT as an example, thermal transport in 1D vdW heterostructures containing three layers is also investigated. It is found that the coaxial BNNT-MSNT coating can significantly reduce the thermal conductance of inner CNT base by 61%, which is even larger than that of an individual MSNT coating. This unexpected reduction in thermal conductance of CNT@BNNT@MSNT can be explained by the suppression of heat flux arising from the possible compression effect, since BNNT-MSNT coating in CNT@BNNT@MSNT can more significantly suppress the vibration of inner CNT when compared to the individual MSNT coating in CNT@MSNT. In addition to the in-plane thermal transport, the interfacial thermal conductance between inner and outer nanotubes in 1D vdW heterostructures is also examined to provide a quantitative understanding of the thermal transport behaviors of1D vdW heterostructures. This work is expected to provide molecular insights into tailoring the heat transport in carbon base 1D vdW heterostructures and thus facilitate their broader applications as thermal interface materials.


Sign in / Sign up

Export Citation Format

Share Document