Conductive heat flux in measurements of the Nusselt number in turbulent Rayleigh-Bénard convection

2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Olga Shishkina ◽  
Stephan Weiss ◽  
Eberhard Bodenschatz
2002 ◽  
Vol 473 ◽  
pp. 191-199 ◽  
Author(s):  
JESSE OTERO ◽  
RALF W. WITTENBERG ◽  
RODNEY A. WORTHING ◽  
CHARLES R. DOERING

We formulate a bounding principle for the heat transport in Rayleigh–Bénard convection with fixed heat flux through the boundaries. The heat transport, as measured by a conventional Nusselt number, is inversely proportional to the temperature drop across the layer and is bounded above according to Nu [les ] cRˆ1/3, where c < 0.42 is an absolute constant and Rˆ = αγβh4/(νκ) is the ‘effective’ Rayleigh number, the non-dimensional forcing scale set by the imposed heat flux κβ. The relation among the parameter Rˆ, the Nusselt number, and the conventional Rayleigh number defined in terms of the temperature drop across the layer, is NuRa = Rˆ, yielding the bound Nu [les ] c3/2Ra1/2.


2018 ◽  
Vol 841 ◽  
pp. 825-850 ◽  
Author(s):  
Chong Shen Ng ◽  
Andrew Ooi ◽  
Detlef Lohse ◽  
Daniel Chung

Previous numerical studies on homogeneous Rayleigh–Bénard convection, which is Rayleigh–Bénard convection (RBC) without walls, and therefore without boundary layers, have revealed a scaling regime that is consistent with theoretical predictions of bulk-dominated thermal convection. In this so-called asymptotic regime, previous studies have predicted that the Nusselt number ($\mathit{Nu}$) and the Reynolds number ($\mathit{Re}$) vary with the Rayleigh number ($\mathit{Ra}$) according to $\mathit{Nu}\sim \mathit{Ra}^{1/2}$ and $\mathit{Re}\sim \mathit{Ra}^{1/2}$ at small Prandtl numbers ($\mathit{Pr}$). In this study, we consider a flow that is similar to RBC but with the direction of temperature gradient perpendicular to gravity instead of parallel to it; we refer to this configuration as vertical natural convection (VC). Since the direction of the temperature gradient is different in VC, there is no exact relation for the average kinetic dissipation rate, which makes it necessary to explore alternative definitions for $\mathit{Nu}$, $\mathit{Re}$ and $\mathit{Ra}$ and to find physical arguments for closure, rather than making use of the exact relation between $\mathit{Nu}$ and the dissipation rates as in RBC. Once we remove the walls from VC to obtain the homogeneous set-up, we find that the aforementioned $1/2$-power-law scaling is present, similar to the case of homogeneous RBC. When focusing on the bulk, we find that the Nusselt and Reynolds numbers in the bulk of VC too exhibit the $1/2$-power-law scaling. These results suggest that the $1/2$-power-law scaling may even be found at lower Rayleigh numbers if the appropriate quantities in the turbulent bulk flow are employed for the definitions of $\mathit{Ra}$, $\mathit{Re}$ and $\mathit{Nu}$. From a stability perspective, at low- to moderate-$\mathit{Ra}$, we find that the time evolution of the Nusselt number for homogenous vertical natural convection is unsteady, which is consistent with the nature of the elevator modes reported in previous studies on homogeneous RBC.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
U. Madanan ◽  
R. J. Goldstein

Abstract The effect of sidewall conductance on Nusselt number for the Rayleigh-Bénard convection is examined by performing nearly identical sets of experiments with sidewalls made of three different materials. These experimental results are utilized to extrapolate and estimate the Nusselt number for an ideal zero-thermal-conductivity sidewall case, which is the case when the sidewalls are perfectly insulating. A semi-analytical model is proposed, based on the concept of extended surfaces, to compute the discrepancy in Nusselt number caused by the presence of finite thermal conductance of the sidewalls. The predictions obtained using this model are found to be in good agreement with the corresponding experimentally determined values.


2000 ◽  
Vol 411 ◽  
pp. 39-58 ◽  
Author(s):  
LAURENS E. HOWLE

We investigate the effect of the finite horizontal boundary properties on the critical Rayleigh and wave numbers for controlled Rayleigh–Bénard convection in an infinite horizontal domain. Specifically, we examine boundary thickness, thermal diffusivity and thermal conductivity. Our control method is through perturbation of the lower-boundary heat flux. A linear proportional-differential control method uses the local amplitude of a shadowgraph to actively redistribute the lower-boundary heat flux. Realistic boundary conditions for laboratory experiments are selected. Through linear stability analysis we examine, in turn, the important boundary properties and make predictions of the properties necessary for successful control experiments. A surprising finding of this work is that for certain realistic parameter ranges, one may find an isola to time-dependent convection as the primary bifurcation.


2011 ◽  
Vol 676 ◽  
pp. 5-40 ◽  
Author(s):  
STEPHAN WEISS ◽  
GUENTER AHLERS

Measurements of the Nusselt number and properties of the large-scale circulation (LSC) are presented for turbulent Rayleigh–Bénard convection in water-filled cylindrical containers (Prandtl number Pr = 4.38) with aspect ratio Γ = 0.50. They cover the range 2 × 108 ≲ Ra ≲ 1 × 1011 of the Rayleigh number Ra. We confirm the occurrence of a double-roll state (DRS) of the LSC and focus on the statistics of the transitions between the DRS and a single-roll state (SRS). The fraction of the run time when the SRS existed varied continuously from about 0.12 near Ra = 2 × 108 to about 0.8 near Ra = 1011, while the fraction of the run time when the DRS could be detected changed from about 0.4 to about 0.06 over the same range of Ra. We determined separately the Nusselt number of the SRS and the DRS, and found the former to be larger than the latter by about 1.6% (0.9%) at Ra = 1010 (1011). We report a contribution to the dynamics of the SRS from a torsional oscillation similar to that observed for cylindrical samples with Γ = 1.00. Results for a number of statistical properties of the SRS are reported, and some are compared with the cases Γ = 0.50, Pr = 0.67 and Γ = 1.00, Pr = 4.38. We found that genuine cessations of the SRS were extremely rare and occurred only about 0.3 times per day, which is less frequent than for Γ = 1.00; however, the SRS was disrupted frequently by roll-state transitions and other less well-defined events. We show that the time derivative of the LSC plane orientation is a stochastic variable which, at constant LSC amplitude, is Gaussian distributed. Within the context of the LSC model of Brown & Ahlers (Phys. Fluids, vol. 20, 2008b, art. 075101), this demonstrates that the stochastic force due to the small-scale fluctuations that is driving the LSC dynamics has a Gaussian distribution.


2018 ◽  
Vol 858 ◽  
pp. 437-473 ◽  
Author(s):  
B. Favier ◽  
J. Purseed ◽  
L. Duchemin

We study the evolution of a melting front between the solid and liquid phases of a pure incompressible material where fluid motions are driven by unstable temperature gradients. In a plane-layer geometry, this can be seen as classical Rayleigh–Bénard convection where the upper solid boundary is allowed to melt due to the heat flux brought by the fluid underneath. This free-boundary problem is studied numerically in two dimensions using a phase-field approach, classically used to study the melting and solidification of alloys, which we dynamically couple with the Navier–Stokes equations in the Boussinesq approximation. The advantage of this approach is that it requires only moderate modifications of classical numerical methods. We focus on the case where the solid is initially nearly isothermal, so that the evolution of the topography is related to the inhomogeneous heat flux from thermal convection, and does not depend on the conduction problem in the solid. From a very thin stable layer of fluid, convection cells appear as the depth – and therefore the effective Rayleigh number – of the layer increases. The continuous melting of the solid leads to dynamical transitions between different convection cell sizes and topography amplitudes. The Nusselt number can be larger than its value for a planar upper boundary, due to the feedback of the topography on the flow, which can stabilize large-scale laminar convection cells.


Sign in / Sign up

Export Citation Format

Share Document