scholarly journals Comment on “Evolution of wall shear stress with Reynolds number in fully developed turbulent channel flow experiments”

2020 ◽  
Vol 5 (12) ◽  
Author(s):  
R. Örlü ◽  
P. Schlatter
2019 ◽  
Vol 4 (7) ◽  
Author(s):  
Pierre-Alain Gubian ◽  
Jordan Stoker ◽  
James Medvescek ◽  
Laurent Mydlarski ◽  
B. Rabi Baliga

2004 ◽  
Vol 126 (5) ◽  
pp. 835-843 ◽  
Author(s):  
Hiroyuki Abe ◽  
Hiroshi Kawamura ◽  
Haecheon Choi

Direct numerical simulation of a fully developed turbulent channel flow has been carried out at three Reynolds numbers, 180, 395, and 640, based on the friction velocity and the channel half width, in order to investigate very large-scale structures and their effects on the wall shear-stress fluctuations. It is shown that very large-scale structures exist in the outer layer and that they certainly contribute to inner layer structures at high Reynolds number. Moreover, it is revealed that very large-scale structures exist even in the wall shear-stress fluctuations at high Reynolds number, which are essentially associated with the very large-scale structures in the outer layer.


Optics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 40-51
Author(s):  
Esther Mäteling ◽  
Michael Klaas ◽  
Wolfgang Schröder

An extended experimental method is presented in which the micro-pillar shear-stress sensor (MPS 3 ) and high-speed stereo particle-image velocimetry measurements are simultaneously performed in turbulent channel flow to conduct concurrent time-resolved measurements of the two-dimensional wall-shear stress (WSS) distribution and the velocity field in the outer flow. The extended experimental setup, which involves a modified MPS 3 measurement setup and data evaluation compared to the standard method, is presented and used to investigate the footprint of the outer, large-scale motions (LSM) onto the near-wall small-scale motions. The measurements were performed in a fully developed, turbulent channel flow at a friction Reynolds number R e τ = 969 . A separation between large and small scales of the velocity fluctuations and the WSS fluctuations was performed by two-dimensional empirical mode decomposition. A subsequent cross-correlation analysis between the large-scale velocity fluctuations and the large-scale WSS fluctuations shows that the streamwise inclination angle between the LSM in the outer layer and the large-scale footprint imposed onto the near-wall dynamics has a mean value of Θ ¯ x = 16.53 ∘ , which is consistent with the literature relying on direct numerical simulations and hot-wire anemometry data. When also considering the spatial shift in the spanwise direction, the mean inclination angle reduces to Θ ¯ x z = 13.92 ∘ .


Sign in / Sign up

Export Citation Format

Share Document