scholarly journals Erratum: Electrically switchable surface waves and bouncing droplets excited on a liquid metal bath [Phys. Rev. Fluids 3 , 124804 (2018)]

2021 ◽  
Vol 6 (8) ◽  
Author(s):  
Xi Zhao ◽  
Jianbo Tang ◽  
Jing Liu
Alloy Digest ◽  
1979 ◽  
Vol 28 (4) ◽  

Abstract CERROBASE Alloy is a bismuth-lead eutectic alloy that melts at 255 F (124 C). It is characterized by initial shrinkage followed by slow growth. Its low melting temperature and/or growth-shrinkage characteristics make it a useful industrial material. Among many applications, it is used for (1) anchoring inserts in wood, metal or plastics, (2) drop-hammer dies, (3) duplicate patterns in pottery and foundry, and (4) liquid metal bath for heat treating. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, forming, heat treating, and machining. Filing Code: Bi-11. Producer or source: Cerro Metal Products.


2019 ◽  
Vol 115 (8) ◽  
pp. 083702 ◽  
Author(s):  
Xi Zhao ◽  
Lixiang Yang ◽  
Yujie Ding ◽  
Pengju Zhang ◽  
Jing Liu

2018 ◽  
Vol 2018 (6) ◽  
pp. 557-560
Author(s):  
V. I. Chumanov ◽  
I. V. Chumanov ◽  
Yu. S. Sergeev

2021 ◽  
Vol 64 (7) ◽  
pp. 530-535
Author(s):  
I. V. Chumanov ◽  
I. A. Alekseev ◽  
D. V. Sergeev

The article presents mathematical and computer modeling of the behavior of liquid electrode metal drops during the process of electroslag remelting (ESP) at a constant current source. The study of the effect of electric field created by direct current allowed us to show the deviation of the drop trajectory from the electrode axis. The flow of electrons and drops of the electrode metal are exposed to electromagnetic forces, which leads to their displacement relative to the remelted electrode axis. This effect entails destabilization of the liquid metal bath and crystal heterogeneity. In turn, the use of external influence on the flow of ESR process can make it possible to stabilize the liquid metal bath even with the use of direct current. Centrifugal forces can act as such forces. They can arise when implementing the technology with the consumable electrode rotation around its own axis. To establish the optimal parameters of rotation speed, it is necessary to estimate the magnitude of impact of the magnetic field that occurs during direct current remelting process. The modeling was carried out using the Ansys Fluent 16.0 software package on the example of remelting 12Kh18N10T steel under the flux ANF-6. The algorithm for calculating of Ansys Fluent is based on the finite element method. In this paper, the mathematical apparatus was not changed and was used in its initial form. The method of magnetic induction was used. The database of information about the ongoing process was built on a grid of finite elements with certain, but sufficient level of adequacy and quality. Each element contains information about the model at a given point, specified for this modeling process. We have revealed the change in the trajectory of the electrode metal drop by electric field from the opposite direction along which the drop flows. The average length of the path traversed by liquid metal drop from the mold axis to the inner surface is from 5 to 15 cm. The motion of an electrode metal drop without an external magnetic field was simulated. This simulation made it possible to determine (estimate) the direction of movement of electrode metal drops and the indicator of necessary external force to stabilize the liquid metal bath during ESP process at direct current equal to 0.067 N.


Sign in / Sign up

Export Citation Format

Share Document