scholarly journals Erratum: Quantized orbital-chasing liquid metal heterodimers directed by an integrated pilot-wave field [Phys. Rev. Fluids 5 , 053603 (2020)]

2021 ◽  
Vol 6 (8) ◽  
Author(s):  
Jianbo Tang ◽  
Xi Zhao ◽  
Jing Liu
Keyword(s):  
Author(s):  
Matthew Durey ◽  
Sam E. Turton ◽  
John W. M. Bush

We present the results of a theoretical investigation of a dynamical system consisting of a particle self-propelling through a resonant interaction with its own quasi-monochromatic pilot-wave field. We rationalize two distinct mechanisms, arising in different regions of parameter space, that may lead to a wavelike statistical signature with the pilot-wavelength. First, resonant speed oscillations with the wavelength of the guiding wave may arise when the particle is perturbed from its steady self-propelling state. Second, a random-walk-like motion may set in when the decay rate of the pilot-wave field is sufficiently small. The implications for the emergent statistics in classical pilot-wave systems are discussed.


2011 ◽  
Vol 674 ◽  
pp. 433-463 ◽  
Author(s):  
ANTONIN EDDI ◽  
ERIC SULTAN ◽  
JULIEN MOUKHTAR ◽  
EMMANUEL FORT ◽  
MAURICE ROSSI ◽  
...  

On a vertically vibrating fluid interface, a droplet can remain bouncing indefinitely. When approaching the Faraday instability onset, the droplet couples to the wave it generates and starts propagating horizontally. The resulting wave–particle association, called a walker, was shown previously to have remarkable dynamical properties, reminiscent of quantum behaviours. In the present article, the nature of a walker's wave field is investigated experimentally, numerically and theoretically. It is shown to result from the superposition of waves emitted by the droplet collisions with the interface. A single impact is studied experimentally and in a fluid mechanics theoretical approach. It is shown that each shock emits a radial travelling wave, leaving behind a localized mode of slowly decaying Faraday standing waves. As it moves, the walker keeps generating waves and the global structure of the wave field results from the linear superposition of the waves generated along the recent trajectory. For rectilinear trajectories, this results in a Fresnel interference pattern of the global wave field. Since the droplet moves due to its interaction with the distorted interface, this means that it is guided by a pilot wave that contains a path memory. Through this wave-mediated memory, the past as well as the environment determines the walker's present motion.


2009 ◽  
Vol 40 (3) ◽  
pp. 289-300
Author(s):  
I. Schmelzer
Keyword(s):  

2020 ◽  
Vol 6 (20) ◽  
pp. eaay9234 ◽  
Author(s):  
Pedro J. Sáenz ◽  
Tudor Cristea-Platon ◽  
John W. M. Bush

We present a macroscopic analog of an open quantum system, achieved with a classical pilot-wave system. Friedel oscillations are the angstrom-scale statistical signature of an impurity on a metal surface, concentric circular modulations in the probability density function of the surrounding electron sea. We consider a millimetric drop, propelled by its own wave field along the surface of a vibrating liquid bath, interacting with a submerged circular well. An ensemble of drop trajectories displays a statistical signature in the vicinity of the well that is strikingly similar to Friedel oscillations. The droplet trajectories reveal the dynamical roots of the emergent statistics. Our study elucidates a new mechanism for emergent quantum-like statistics in pilot-wave hydrodynamics and so suggests new directions for the nascent field of hydrodynamic quantum analogs.


2013 ◽  
Vol 727 ◽  
pp. 612-647 ◽  
Author(s):  
Jan Moláček ◽  
John W. M. Bush

AbstractWe present the results of a combined experimental and theoretical investigation of droplets walking on a vertically vibrating fluid bath. Several walking states are reported, including pure resonant walkers that bounce with precisely half the driving frequency, limping states, wherein a short contact occurs between two longer ones, and irregular chaotic walking. It is possible for several states to arise for the same parameter combination, including high- and low-energy resonant walking states. The extent of the walking regime is shown to be crucially dependent on the stability of the bouncing states. In order to estimate the resistive forces acting on the drop during impact, we measure the tangential coefficient of restitution of drops impacting a quiescent bath. We then analyse the spatio-temporal evolution of the standing waves created by the drop impact and obtain approximations to their form in the small-drop and long-time limits. By combining theoretical descriptions of the horizontal and vertical drop dynamics and the associated wave field, we develop a theoretical model for the walking drops that allows us to rationalize the limited extent of the walking regimes. The critical requirement for walking is that the drop achieves resonance with its guiding wave field. We also rationalize the observed dependence of the walking speed on system parameters: while the walking speed is generally an increasing function of the driving acceleration, exceptions arise due to possible switching between different vertical bouncing modes. Special focus is given to elucidating the critical role of impact phase on the walking dynamics. The model predictions are shown to compare favourably with previous and new experimental data. Our results form the basis of the first rational hydrodynamic pilot-wave theory.


1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

1984 ◽  
Vol 45 (C9) ◽  
pp. C9-179-C9-182
Author(s):  
G. L.R. Mair ◽  
T. Mulvey ◽  
R. G. Forbes

Sign in / Sign up

Export Citation Format

Share Document