scholarly journals Proposal for an X-Ray Free Electron Laser Oscillator with Intermediate Energy Electron Beam

2012 ◽  
Vol 108 (3) ◽  
Author(s):  
Jinhua Dai ◽  
Haixiao Deng ◽  
Zhimin Dai
2020 ◽  
Vol 14 (12) ◽  
pp. 748-754 ◽  
Author(s):  
Eduard Prat ◽  
Rafael Abela ◽  
Masamitsu Aiba ◽  
Arturo Alarcon ◽  
Jürgen Alex ◽  
...  

2017 ◽  
Vol 24 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
Shuichi Okuda

The influence of higher-harmonic free-electron laser (FEL) oscillations on an electron beam have been studied by measuring its bunch length at the NIJI-IV storage ring. The bunch length and the lifetime of the electron beam were measured, and were observed to have become longer owing to harmonic lasing, which is in accord with the increase of the FEL gain. It was demonstrated that the saturated FEL power could be described by the theory of bunch heating, even for the harmonic lasing. Cavity-length detuning curves were measured for the harmonic lasing, and it was found that the width of the detuning curve was proportional to a parameter that depended on the bunch length. These experimental results will be useful for developing compact resonator-type FELs by using higher harmonics in the extreme-ultraviolet and the X-ray regions.


2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


Sign in / Sign up

Export Citation Format

Share Document