scholarly journals Matching-based two-color x-ray free-electron laser generation utilizing laser-plasma accelerated electron beam

Author(s):  
Tao Liu ◽  
Kaiqing Zhang ◽  
Zheng Qi ◽  
Si Chen ◽  
Chao Feng ◽  
...  
2019 ◽  
Vol 9 (12) ◽  
pp. 2447 ◽  
Author(s):  
Driss Oumbarek Espinos ◽  
Amin Ghaith ◽  
Thomas André ◽  
Charles Kitégi ◽  
Mourad Sebdaoui ◽  
...  

Laser plasma acceleration (LPA) capable of providing femtosecond and GeV electron beams in cm scale distances brings a high interest for different applications, such as free electron laser and future colliders. Nevertheless, LPA high divergence and energy spread require an initial strong focus to mitigate the chromatic effects. The reliability, in particular with the pointing fluctuations, sets a real challenge for the control of the dispersion along the electron beam transport. We examine here how the magnetic defects of the first strong quadrupoles, in particular, the skew terms, can affect the brightness of the transported electron beam, in the case of the COXINEL transport line, designed for manipulating the electron beam properties for a free electron laser application. We also show that the higher the initial beam divergence, the larger the degradation. Experimentally, after having implemented a beam pointing alignment compensation method enabling us to adjust the position and dispersion independently, we demonstrate that the presence of non-negligible skew quadrupolar components induces a transversal spread and tilt of the beam, leading to an emittance growth and brightness reduction. We are able to reproduce the measurements with beam transport simulations using the measured electron beam parameters.


2017 ◽  
Vol 24 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
Shuichi Okuda

The influence of higher-harmonic free-electron laser (FEL) oscillations on an electron beam have been studied by measuring its bunch length at the NIJI-IV storage ring. The bunch length and the lifetime of the electron beam were measured, and were observed to have become longer owing to harmonic lasing, which is in accord with the increase of the FEL gain. It was demonstrated that the saturated FEL power could be described by the theory of bunch heating, even for the harmonic lasing. Cavity-length detuning curves were measured for the harmonic lasing, and it was found that the width of the detuning curve was proportional to a parameter that depended on the bunch length. These experimental results will be useful for developing compact resonator-type FELs by using higher harmonics in the extreme-ultraviolet and the X-ray regions.


2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


2021 ◽  
Vol 11 (22) ◽  
pp. 10768
Author(s):  
Ye Chen ◽  
Frank Brinker ◽  
Winfried Decking ◽  
Matthias Scholz ◽  
Lutz Winkelmann

Sub-ångström working regime refers to a working state of free-electron lasers which allows the generation of hard X-rays at a photon wavelength of 1 ångström and below, that is, a photon energy of 12.5 keV and above. It is demonstrated that the accelerators of the European X-ray Free-Electron Laser can provide highly energetic electron beams of up to 17.5 GeV. Along with long variable-gap undulators, the facility offers superior conditions for exploring self-amplified spontaneous emission (SASE) in the sub-ångström regime. However, the overall FEL performance relies quantitatively on achievable electron beam qualities through a kilometers-long accelerator beamline. Low-emittance electron beam production and the associated start-to-end beam physics thus becomes a prerequisite to dig in the potentials of SASE performance towards higher photon energies. In this article, we present the obtained results on electron beam qualities produced with different accelerating gradients of 40 MV/m–56 MV/m at the cathode, as well as the final beam qualities in front of the undulators via start-to-end simulations considering realistic conditions. SASE studies in the sub-ångström regime, using optimized electron beams, are carried out at varied energy levels according to the present state of the facility, that is, a pulsed mode operating with a 10 Hz-repetition 0.65 ms-long bunch train energized to 14 GeV and 17.5 GeV. Millijoule-level SASE intensity is obtained at a photon energy of 25 keV at 14 GeV electron beam energy using a gain length of about 7 m. At 17.5 GeV, half-millijoule lasing is achieved at 40 keV. Lasing at up to 50 keV is demonstrated with pulse energies in the range of a few hundreds and tens of microjoules with existing undulators and currently achievable electron beam qualities.


Author(s):  
Hideki Aoyagi ◽  
Yoshihiro Asano ◽  
Toshiro Itoga ◽  
Nobuteru Nariyama ◽  
Teruhiko Bizen ◽  
...  

2018 ◽  
Vol 25 (1) ◽  
pp. 282-288 ◽  
Author(s):  
Shigeki Owada ◽  
Kazuaki Togawa ◽  
Takahiro Inagaki ◽  
Toru Hara ◽  
Takashi Tanaka ◽  
...  

The design and performance of a soft X-ray free-electron laser (FEL) beamline of the SPring-8 Compact free-electron LAser (SACLA) are described. The SPring-8 Compact SASE Source test accelerator, a prototype machine of SACLA, was relocated to the SACLA undulator hall for dedicated use for the soft X-ray FEL beamline. Since the accelerator is operated independently of the SACLA main linac that drives the two hard X-ray beamlines, it is possible to produce both soft and hard X-ray FEL simultaneously. The FEL pulse energy reached 110 µJ at a wavelength of 12.4 nm (i.e.photon energy of 100 eV) with an electron beam energy of 780 MeV.


Sign in / Sign up

Export Citation Format

Share Document