Comment on “Effect of Current Sheets on the Solar Wind Magnetic Field Power Spectrum from the Ulysses Observation: From Kraichnan to Kolmogorov Scaling”

2012 ◽  
Vol 108 (19) ◽  
Author(s):  
S. Perri ◽  
V. Carbone
2007 ◽  
Author(s):  
Leonard F. Burlaga ◽  
Adolfo F. Viñas ◽  
Sumiyoshi Abe ◽  
Hans Herrmann ◽  
Piero Quarati ◽  
...  

2002 ◽  
Vol 29 (10) ◽  
pp. 86-1-86-4 ◽  
Author(s):  
B. Hnat ◽  
S. C. Chapman ◽  
G. Rowlands ◽  
N. W. Watkins ◽  
W. M. Farrell

2005 ◽  
Vol 23 (9) ◽  
pp. 3095-3101 ◽  
Author(s):  
P. Wintoft ◽  
M. Wik ◽  
H. Lundstedt ◽  
L. Eliasson

Abstract. The 7-10 November 2004 period contains two events for which the local ground magnetic field was severely disturbed and simultaneously, the solar wind displayed several shocks and negative Bz periods. Using empirical models the 10-min RMS and at Brorfelde (BFE, 11.67° E, 55.63° N), Denmark, are predicted. The models are recurrent neural networks with 10-min solar wind plasma and magnetic field data as inputs. The predictions show a good agreement during 7 November, up until around noon on 8 November, after which the predictions become significantly poorer. The correlations between observed and predicted log RMS is 0.77 during 7-8 November but drops to 0.38 during 9-10 November. For RMS the correlations for the two periods are 0.71 and 0.41, respectively. Studying the solar wind data for other L1-spacecraft (WIND and SOHO) it seems that the ACE data have a better agreement to the near-Earth solar wind during the first two days as compared to the last two days. Thus, the accuracy of the predictions depends on the location of the spacecraft and the solar wind flow direction. Another finding, for the events studied here, is that the and models showed a very different dependence on Bz. The model is almost independent of the solar wind magnetic field Bz, except at times when Bz is exceptionally large or when the overall activity is low. On the contrary, the model shows a strong dependence on Bz at all times.


2019 ◽  
Vol 627 ◽  
pp. A96 ◽  
Author(s):  
R. Bruno ◽  
D. Telloni ◽  
L. Sorriso-Valvo ◽  
R. Marino ◽  
R. De Marco ◽  
...  

Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between ∼5/3 and ∼3/2. In particular, at 1 AU, the magnetic field spectrum, observed within fast corotating streams, also shows a clear steepening for frequencies higher than the typical proton scales, of the order of ∼3 × 10−1 Hz, and a flattening towards 1/f at frequencies lower than ∼10−3 Hz. However, the current literature reports observations of the low-frequency break only for fast streams. Slow streams, as observed to date, have not shown a clear break, and this has commonly been attributed to slow wind intervals not being long enough. Actually, because of the longer transit time from the Sun, slow wind turbulence would be older and the frequency break would be shifted to lower frequencies with respect to fast wind. Based on this hypothesis, we performed a careful search for long-lasting slow wind intervals throughout 12 years of Wind satellite measurements. Our search, based on stringent requirements not only on wind speed but also on the level of magnetic compressibility and Alfvénicity of the turbulent fluctuations, yielded 48 slow wind streams lasting longer than 7 days. This result allowed us to extend our study to frequencies sufficiently low and, for the first time in the literature, we are able to show that the 1/f magnetic spectral scaling is also present in the slow solar wind, provided the interval is long enough. However, this is not the case for the slow wind velocity spectrum, which keeps the typical Kolmogorov scaling throughout the analysed frequency range. After ruling out the possible role of compressibility and Alfvénicity for the 1/f scaling, a possible explanation in terms of magnetic amplitude saturation, as recently proposed in the literature, is suggested.


Science ◽  
1996 ◽  
Vol 274 (5292) ◽  
pp. 1501-1503 ◽  
Author(s):  
H. A. Zook ◽  
E. Grun ◽  
M. Baguhl ◽  
D. P. Hamilton ◽  
G. Linkert ◽  
...  

2009 ◽  
Vol 114 (A7) ◽  
pp. n/a-n/a ◽  
Author(s):  
James M. Weygand ◽  
W. H. Matthaeus ◽  
S. Dasso ◽  
M. G. Kivelson ◽  
L. M. Kistler ◽  
...  

2011 ◽  
Vol 29 (2) ◽  
pp. 237-249 ◽  
Author(s):  
B. Miao ◽  
B. Peng ◽  
G. Li

Abstract. Current sheet is a significant source of solar wind MHD turbulence intermittency. It has long been recognized that these structures can arise from non-linear interactions of MHD turbulence. Alternatively, they may also be relic structures in the solar wind that have a solar origin, e.g., magnetic walls of flux tubes that separate solar wind plasma into distinct parcels. Identifying these structures in the solar wind is crucial to understanding the properties of the solar wind MHD turbulence. Using Ulysses observations we examine 3-year worth of solar wind magnetic field data when the Ulysses is at low latitude during solar minimum. Extending the previous work of Li (2007, 2008), we develop an automatic data analysis method of current sheet identification. Using this method, we identify more than 28000 current sheets. Various properties of the current sheet are obtained. These include the distributions of the deflection angle across the current sheet, the thickness of the current sheet and the waiting time statistics between current sheets.


Sign in / Sign up

Export Citation Format

Share Document