solar wind flow
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 23)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 7 (4) ◽  
pp. 10-18
Author(s):  
Anastasiya Moskaleva ◽  
Mariya Ryazanceva ◽  
Yuriy Ermolaev ◽  
Irina Lodkina

Studying the direction of the solar wind flow is a topical problem of space weather forecasting. As a rule, the quiet and uniform solar wind propagates radially, but significant changes in the solar wind flow direction can be observed, for example, in compression regions before the interplanetary coronal mass ejections (Sheath) and Corotating Interaction Regions (CIR) that precede high-speed streams from coronal holes. In this study, we perform a statistical analysis of the longitude (φ) and latitude (θ) flow direction angles and their variations on different time scales (30 s and 3600 s) in solar wind large-scale streams of different types, using WIND spacecraft data. We also examine the relationships of the value and standard deviations SD of the flow direction angles with various solar wind parameters, regardless of the solar wind type. We have established that maximum values of longitude and latitude angle modulus, as well as their variations, are observed for Sheath, CIR, and Rare, with the probability of large deviations from the radial direction (>5°) increasing. The dependence on the solar wind type is shown to decrease with scale. We have also found that the probability of large values of SD(θ) and SD(φ) increases with increasing proton temperature (Tp) in the range 5–10 eV and with increasing proton velocity (Vp) in the range 400–500 km/s.


2021 ◽  
Vol 7 (4) ◽  
pp. 10-17
Author(s):  
Anastasiya Moskaleva ◽  
Mariya Ryazanceva ◽  
Yuriy Ermolaev ◽  
Irina Lodkina

Studying the direction of the solar wind flow is a topical problem of space weather forecasting. As a rule, the quiet and uniform solar wind propagates radially, but significant changes in the solar wind flow direction can be observed, for example, in compression regions before the interplanetary coronal mass ejections (Sheath) and Corotating Interaction Regions (CIR) that precede high-speed streams from coronal holes. In this study, we perform a statistical analysis of the longitude (φ) and latitude (θ) flow direction angles and their variations on different time scales (30 s and 3600 s) in solar wind large-scale streams of different types, using WIND spacecraft data. We also examine the relationships of the value and standard deviations SD of the flow direction angles with various solar wind parameters, regardless of the solar wind type. We have established that maximum values of longitude and latitude angle modulus, as well as their variations, are observed for Sheath, CIR, and Rare, with the probability of large deviations from the radial direction (>5°) increasing. The dependence on the solar wind type is shown to decrease with scale. We have also found that the probability of large values of SD(θ) and SD(φ) increases with increasing proton temperature (Tp) in the range 5–10 eV and with increasing proton velocity (Vp) in the range 400–500 km/s.


2021 ◽  
Author(s):  
Lucile Turc ◽  
Markus Battarbee ◽  
Urs Ganse ◽  
Andreas Johlander ◽  
Yann Pfau-Kempf ◽  
...  

<p>The foreshock, extending upstream of the quasi-parallel shock and populated with shock-reflected particles, is home to intense wave activity in the ultra-low frequency range.<em> </em>The most commonly observed of these waves are the “30 s” waves, fast magnetosonic waves propagating sunward in the plasma rest frame, but carried earthward by the faster solar wind flow. These waves are thought to be the main source of Pc3 magnetic pulsations (10 – 45 s) in the dayside magnetosphere. A handful of case studies with suitable spacecraft conjunctions have allowed simultaneous investigations of the wave properties in different geophysical regions, but the global picture of the wave transmission from the foreshock through the magnetosheath into the magnetosphere is still not known. In this work, we use global simulations performed with the hybrid-Vlasov model Vlasiator to study the Pc3 wave properties in the foreshock, magnetosheath and magnetosphere for different solar wind conditions. We find that in all three regions the wave power peaks at higher frequencies when the interplanetary magnetic field strength is larger, consistent with previous studies. While the transverse wave power decreases with decreasing Alfvén Mach number in the foreshock, the compressional wave power shows little variation. In contrast, in the magnetosheath and the magnetosphere, the compressional wave power decreases with decreasing Mach number. Inside the magnetosphere, the distribution of wave power varies with the IMF cone angle. We discuss the implications of these results for the propagation of foreshock waves across the different geophysical regions, and in particular their transmission through the bow shock.</p>


2021 ◽  
Author(s):  
Thomas Wiegelmann ◽  
Thomas Neukirch ◽  
Iulia Chifu ◽  
Bernd Inhester

<p>Computing the solar coronal magnetic field and plasma<br>environment is an important research topic on it's own right<br>and also important for space missions like Solar Orbiter to<br>guide the analysis of remote sensing and in-situ instruments.<br>In the inner solar corona plasma forces can be neglected and<br>the field is modelled under the assumption of a vanishing<br>Lorentz-force. Further outwards (above about two solar radii)<br>plasma forces and the solar wind flow has to be considered.<br>Finally in the heliosphere one has to consider that the Sun<br>is rotating and the well known Parker-spiral forms.<br>We have developed codes based on optimization principles<br>to solve nonlinear force-free, magneto-hydro-static and<br>stationary MHD-equilibria. In the present work we want to<br>extend these methods by taking the solar rotation into account.</p>


2021 ◽  
Author(s):  
Wensai Shang ◽  
Binbin Tang ◽  
Quanqi Shi ◽  
Et al

<p>The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at ∼(-60, 0, -5) Re in Geocentric Solar Ecliptic coordinate in the deep magnetotail. ~ 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun-Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X-Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind Vy effects. The results from two global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general.</p>


2021 ◽  
Author(s):  
Rachel Bailey ◽  
Martin A. Reiss ◽  
Christian Möstl ◽  
C. Nick Arge ◽  
Carl Henney ◽  
...  

<p>In this study we present a method for forecasting the ambient solar wind at L1 from coronal magnetic models. Ambient solar wind flows in interplanetary space determine how solar storms evolve through the heliosphere before reaching Earth, and accurately modelling and forecasting the ambient solar wind flow is therefore imperative to space weather awareness. We describe a novel machine learning approach in which solutions from models of the solar corona based on 12 different ADAPT magnetic maps are used to output the solar wind conditions some days later at the Earth. A feature analysis is carried out to determine which input variables are most important. The results of the forecasting model are compared to observations and existing models for one whole solar cycle in a comprehensive validation analysis. We find that the new model outperforms existing models and 27-day persistence in almost all metrics. The final model discussed here represents an extremely fast, well-validated and open-source approach to the forecasting of ambient solar wind at Earth, and is specifically well-suited for ensemble modelling or for application with other coronal models.</p>


2021 ◽  
Author(s):  
Zdeněk Němeček ◽  
Tereza Ďurovcová ◽  
Jana Šafránková ◽  
John D. Richardson ◽  
Jiří Šimůnek ◽  
...  

<p>The solar wind non-radial velocity components observed beyond the Alfvén point are usually attributed to waves, the interaction of different streams, or other transient phenomena. However, Earth-orbiting spacecraft as well as monitors at L1 indicate systematic deviations of the wind velocity from the radial direction. Since these deviations are of the order of several degrees, the calibration of the instruments is often questioned. This paper investigates for the first time the evolution of non-radial components of the solar wind flow along the path from ≈ 0.17 to 10 AU. A comparison of observations at 1 AU with those closer to or farther from the Sun based on measurements of many spacecraft at different locations in the heliosphere (Parker Solar Probe, Helios 1 and 2, Wind, ACE, Spektr-R, ARTEMIS probes, MAVEN, Voyagers 1and 2) shows that (i) the average values of non-radial components are not zero and vary in a systematic manner with the distance from the Sun, (ii) their values significantly depend on the solar wind radial velocity, (iii) the deviation from radial direction well correlates with the cross-helicity, and (iv) the values of non-radial components peaks at 0.25 AU and gradually decreases toward zero in the outer heliosphere. Our results suggest that the difference in the propagation direction between the faster and slower winds is already established in the solar corona and is connected with the forces emitting solar wind plasma from the coronal magnetic field. The correlation with cross-helicity probably points to outward propagating Alfven waves generated in outer corona as the most probable source of observed deviations.</p>


2021 ◽  
Author(s):  
Qing-He Zhang ◽  
Yong-Liang Zhang ◽  
Chi Wang ◽  
Michael Lockwood ◽  
Hui-Gen Yang ◽  
...  

<p><strong>A distinct class of aurora, called transpolar auroral arc (TPA) (in some cases called “theta” aurora), appears in the extremely high latitude ionosphere of the Earth when interplanetary magnetic field (IMF) is northward. The formation and evolution of TPA offers clues about processes transferring energy and momentum from the solar wind to the magnetosphere and ionosphere during a northward IMF. However, their formation mechanisms remain poorly understood and controversial. We report a new mechanism identified from multiple-instrument observations of unusually bright, multiple TPAs and simulations from a high-resolution three-dimensional global MagnetoHydroDynamics (MHD) model. The observations and simulations show an excellent agreement and reveal that these multiple TPAs are generated by precipitating energetic magnetospheric electrons within field-aligned current (FAC) sheets. These FAC sheets are generated by multiple flow shear sheets in both the magnetospheric boundary produced by Kelvin-Helmholtz instability between super-sonic solar wind flow and magnetosphere plasma, and the plasma sheet generated by the interactions between the enhanced earthward plasma flows from the distant tail (less than -100 R<sub>E</sub>) and the enhanced tailward flows from the near tail (about -20 R<sub>E</sub>). The study offers a new insight into the complex solar wind-magnetosphere-ionosphere coupling processes under a northward IMF condition, and it challenges existing paradigms of the dynamics of the Earth’s magnetosphere.</strong></p>


Author(s):  
Allan R Macneil ◽  
Mathew J Owens ◽  
Robert T Wicks ◽  
Mike Lockwood

Abstract In its first encounter at solar distances as close as r = 0.16AU, Parker Solar Probe (PSP) observed numerous local reversals, or inversions, in the heliospheric magnetic field (HMF), which were accompanied by large spikes in solar wind speed. Both solar and in situ mechanisms have been suggested to explain the existence of HMF inversions in general. Previous work using Helios 1, covering 0.3–1AU, observed inverted HMF to become more common with increasing r, suggesting that some heliospheric driving process creates or amplifies inversions. This study expands upon these findings, by analysing inversion-associated changes in plasma properties for the same large data set, facilitated by observations of ‘strahl’ electrons to identify the unperturbed magnetic polarity. We find that many inversions exhibit anti-correlated field and velocity perturbations, and are thus characteristically Alfvénic, but many also depart strongly from this relationship over an apparent continuum of properties. Inversions depart further from the ‘ideal’ Alfvénic case with increasing r, as more energy is partitioned in the field, rather than the plasma, component of the perturbation. This departure is greatest for inversions with larger density and magnetic field strength changes, and characteristic slow solar wind properties. We find no evidence that inversions which stray further from ‘ideal’ Alfvénicity have different generation processes from those which are more Alfvénic. Instead, different inversion properties could be imprinted based on transport or formation within different solar wind streams.


2020 ◽  
Vol 47 (22) ◽  
Author(s):  
N. Romanelli ◽  
G. DiBraccio ◽  
J. Halekas ◽  
E. Dubinin ◽  
J. Gruesbeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document