scholarly journals Enhanced Charge Order in a Photoexcited One-Dimensional Strongly Correlated System

2012 ◽  
Vol 109 (19) ◽  
Author(s):  
Hantao Lu ◽  
Shigetoshi Sota ◽  
Hiroaki Matsueda ◽  
Janez Bonča ◽  
Takami Tohyama
2002 ◽  
Vol 12 (9) ◽  
pp. 205-209
Author(s):  
H. Seo ◽  
M. Kuwabara ◽  
M. Ogata

The ground state properties of the organic spin-Peierls compounds with one-dimensional quarter-filled band are investigated theoretically. In the strongly correlated regime, two insulating states compete to each other, which are the charge ordered state due to the inter-site Coulomb interaction, and the `dimer Mott' insulating state due to the combined effects of the electron-phonon and the on-site Coulomb interactions. In both of these states, the electron-phonon interaction further produces the lattice tetramization, which is interpreted as the spin-Peierls state.


2014 ◽  
Vol 53 (7) ◽  
pp. 3709-3715 ◽  
Author(s):  
Shuai Lin ◽  
Peng Tong ◽  
Bosen Wang ◽  
Jianchao Lin ◽  
Yanan Huang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
F. Boschini ◽  
M. Minola ◽  
R. Sutarto ◽  
E. Schierle ◽  
M. Bluschke ◽  
...  

AbstractIn strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi2Sr2CaCu2O8+δ, a prototypical cuprate superconductor, to probe electronic correlations within the CuO2 plane. We discover a dynamic quasi-circular pattern in the x-y scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order. Along with doping- and temperature-dependent measurements, our experiments reveal a picture of charge order competing with superconductivity where short-range domains along x and y can dynamically rotate into any other in-plane direction. This quasi-circular spectrum, a hallmark of Brazovskii-type fluctuations, has immediate consequences to our understanding of rotational and translational symmetry breaking in the cuprates. We discuss how the combination of short- and long-range Coulomb interactions results in an effective non-monotonic potential that may determine the quasi-circular pattern.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Minoru Yamashita ◽  
Shiori Sugiura ◽  
Akira Ueda ◽  
Shun Dekura ◽  
Taichi Terashima ◽  
...  

AbstractWe perform magnetic susceptibility and magnetic torque measurements on the organic κ-(BEDT-TTF)2Hg(SCN)2Br, which is recently suggested to host an exotic quantum dipole-liquid in its low-temperature insulating phase. Below the metal-insulator (MI) transition temperature, the magnetic susceptibility follows a Curie–Weiss law with a positive Curie–Weiss temperature, and a particular $$M\propto \sqrt{H}$$ M ∝ H curve is observed. The emergent ferromagnetically interacting spins amount to about 1/6 of the full spin moment of localized charges. Taking account of the possible inhomogeneous quasi-charge-order that forms a dipole-liquid, we construct a model of antiferromagnetically interacting spin chains in two adjacent charge-ordered domains, which are coupled via fluctuating charges on a Mott-dimer at the boundary. We find that the charge fluctuations can draw a weak ferromagnetic moment out of the spin singlet domains.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
C. Bertrand ◽  
A. Allou ◽  
F. Beauchamp ◽  
E. Pluyette ◽  
P. Defrasne ◽  
...  

The MECTUB code was developed to evaluate the risk of swelling and bursting of Steam Generator (SG) tubes. This code deals with the physic of intermediate steam-water leaks into sodium which induce a Sodium-Water Reaction (SWR). It is based on a one-dimensional calculation to describe the thermomechanical behavior of tubes under a high internal pressure and a fast external overheating. The mechanical model of MECTUB is strongly correlated with the kind of the material of the SG tubes. It has been developed and validated by using experiments performed on the alloy 800. A change to tubes made of Modified 9Cr-1Mo steel requires more knowledge of Modified 9Cr-1Mo steel behavior which influences the bursting time at high temperatures (up to 1200°C). Studies have been initiated to adapt the mechanical model and to qualify it for this material. The first part of this paper focuses on the mechanical law modelling (elasticity, plasticity, and creep) for Modified 9Cr-1Mo steel and on overheating thermal data. In a second part, the results of bursting tests performed on Modified 9Cr-1Mo tubes in the SQUAT facility of CEA are used to validate the mechanical model of MECTUB for the Modified 9Cr-1Mo material.


Sign in / Sign up

Export Citation Format

Share Document