scholarly journals Explicit Local Integrals of Motion for the Many-Body Localized State

2016 ◽  
Vol 116 (1) ◽  
Author(s):  
Louk Rademaker ◽  
Miguel Ortuño
2015 ◽  
Vol 891 ◽  
pp. 420-465 ◽  
Author(s):  
V. Ros ◽  
M. Müller ◽  
A. Scardicchio

2015 ◽  
Vol 91 (8) ◽  
Author(s):  
Anushya Chandran ◽  
Isaac H. Kim ◽  
Guifre Vidal ◽  
Dmitry A. Abanin

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3208
Author(s):  
Yu Ying ◽  
Ali Baddour ◽  
Vladimir Gerdt ◽  
Mikhail Malykh ◽  
Leonid Sevastianov

A new approach to the construction of difference schemes of any order for the many-body problem that preserves all its algebraic integrals is proposed herein. We introduced additional variables, namely distances and reciprocal distances between bodies, and wrote down a system of differential equations with respect to the coordinates, velocities, and the additional variables. In this case, the system lost its Hamiltonian form, but all the classical integrals of motion of the many-body problem under consideration, as well as new integrals describing the relationship between the coordinates of the bodies and the additional variables are described by linear or quadratic polynomials in these new variables. Therefore, any symplectic Runge–Kutta scheme preserves these integrals exactly. The evidence for the proposed approach is given. To illustrate the theory, the results of numerical experiments for the three-body problem on a plane are presented with the choice of initial data corresponding to the motion of the bodies along a figure of eight (choreographic test).


1968 ◽  
Vol 111 (1) ◽  
pp. 392-416 ◽  
Author(s):  
K DIETRICH ◽  
K HARA

2021 ◽  
Vol 118 (11) ◽  
pp. 113101
Author(s):  
Xiaoli Zhu ◽  
Siting Ding ◽  
Lihui Li ◽  
Ying Jiang ◽  
Biyuan Zheng ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


Sign in / Sign up

Export Citation Format

Share Document