scholarly journals Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

2017 ◽  
Vol 118 (22) ◽  
Author(s):  
Bitan Roy ◽  
Yahya Alavirad ◽  
Jay D. Sau
2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Shi Wang ◽  
Zhongyuan Qi ◽  
Bin Xi ◽  
Wei Wang ◽  
Shun-Li Yu ◽  
...  

1998 ◽  
Vol 67 (1) ◽  
pp. 280-289 ◽  
Author(s):  
Shigemasa Matsuo ◽  
Seiji Higashitani ◽  
Yasushi Nagato ◽  
Katsuhiko Nagai

2014 ◽  
Vol 70 (12) ◽  
pp. 515-518 ◽  
Author(s):  
Erik Hennings ◽  
Horst Schmidt ◽  
Wolfgang Voigt

The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2solutions is governed by coordination competition of Cl−and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+both in a tetrahedral coordination with Cl−and in an octahedral environment defined by five water molecules and one Cl−shared with the [ZnCl4]2−unit. Thus, these two different types of Zn2+cations form isolated units with composition [Zn2Cl4(H2O)5] (pentaaqua-μ-chlorido-trichloridodizinc). The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+cations, one of which is tetrahedrally coordinated by four Cl−anions. The two other Zn2+cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O)6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O)6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.


2007 ◽  
Vol 22 (06) ◽  
pp. 449-456 ◽  
Author(s):  
MIN HE ◽  
HONG-TAO FENG ◽  
WEI-MIN SUN ◽  
HONG-SHI ZONG

We study the dynamical chiral symmetry breaking (DCSB) of three-dimensional quantum electrodynamics (QED3) at finite chemical potential and temperature in the framework of Dyson–Schwinger approach. Based on the rainbow approximation and assumption that the wave-function renormalization factor equals to one, the dynamically generated mass function is derived and then the corresponding phase diagram in the (T, μ) plane is obtained.


Sign in / Sign up

Export Citation Format

Share Document