scholarly journals Gravitational Waves Induced by Non-Gaussian Scalar Perturbations

2019 ◽  
Vol 122 (20) ◽  
Author(s):  
Rong-Gen Cai ◽  
Shi Pi ◽  
Misao Sasaki
2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


2011 ◽  
Vol 26 (36) ◽  
pp. 2697-2702 ◽  
Author(s):  
M. MOHSENZADEH ◽  
A. SOJASI ◽  
E. YUSOFI

The main goal of this paper is to derive the primordial power spectrum for the scalar perturbations generated as a result of quantum fluctuations during an inflationary period by an alternative approach of field quantization.1–3 Formulas are derived for the gravitational waves, special cases of which include power law inflation and inflation in the slow roll approximation, in Krein space quantization.


2018 ◽  
Vol 27 (14) ◽  
pp. 1846005 ◽  
Author(s):  
Tom Banks ◽  
W. Fischler

This essay outlines the Holographic Spacetime (HST) theory of cosmology and its relation to conventional theories of inflation. The predictions of the theory are compatible with observations, and one must hope for data on primordial gravitational waves or non-Gaussian fluctuations to distinguish it from conventional models. The model predicts an early era of structure formation, prior to the Big Bang. Understanding the fate of those structures requires complicated simulations that have not yet been done. The result of those calculations might falsify the model, or might provide a very economical framework for explaining dark matter and the generation of the baryon asymmetry.


2017 ◽  
Vol 842 (1) ◽  
pp. 46 ◽  
Author(s):  
Jai-chan Hwang ◽  
Donghui Jeong ◽  
Hyerim Noh

2002 ◽  
Vol 65 (12) ◽  
Author(s):  
Bruce Allen ◽  
Jolien D. E. Creighton ◽  
Éanna É. Flanagan ◽  
Joseph D. Romano

Sign in / Sign up

Export Citation Format

Share Document