scholarly journals Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution

2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Yuan Cao ◽  
Yu-Huai Li ◽  
Kui-Xing Yang ◽  
Yang-Fan Jiang ◽  
Shuang-Lin Li ◽  
...  
Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1299
Author(s):  
Xingyu Wang ◽  
Wei Liu ◽  
Tianyi Wu ◽  
Chang Guo ◽  
Yijun Zhang ◽  
...  

Modulating retro-reflector (MRR), originally introduced to support laser communication, relieves most of the weight, power, and pointing requirements to the ground station. In this paper, a plug-and-play measurement device independent quantum key distribution (MDI-QKD) scheme with MRR is proposed not only to eliminate detector side channels and allow an untrusted satellite relay between two users, but also to simplify the requirements set-ups in practical flexible moving scenarios. The plug-and-play architecture compensates for the polarization drift during the transmission to provide superior performance in implementing the MDI-QKD on a free-space channel, and the MRR device is adopted to relax the requirements on both communication terminals. A double-pass correlated turbulent channel model is presented to investigate the complex and unstable channel characteristics caused by the atmospheric turbulence. Furthermore, the security of the modified MDI-QKD scheme is analyzed under some classical attacks and the simulation results indicate the feasibility under the situation that the system performance deteriorates with the increase of fading correlation coefficient and the turbulence intensity, which provides a meaningful step towards an MDI-QKD based on the moving platforms to join a dynamic quantum network with untrusted relays.


2018 ◽  
Vol 16 (03) ◽  
pp. 1850027 ◽  
Author(s):  
Ahmed Ismael Khaleel ◽  
Shelan Khasro Tawfeeq

In this work, an estimation of the key rate of measurement-device-independent quantum key distribution (MDI-QKD) protocol in free space was performed. The examined free space links included satellite-earth downlink, uplink and intersatellite link. Various attenuation effects were considered such as diffraction, atmosphere, turbulence and the efficiency of the detection system. Two cases were tested: asymptotic case with infinite number of decoy states and one-decoy state case. The estimated key rate showed the possibility of applying MDI-QKD in earth-satellite and intersatellite links, offering longer single link distance to be covered.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Kieran N. Wilkinson ◽  
Panagiotis Papanastasiou ◽  
Carlo Ottaviani ◽  
Tobias Gehring ◽  
Stefano Pirandola

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1010
Author(s):  
Guoqi Huang ◽  
Qin Dong ◽  
Wei Cui ◽  
Rongzhen Jiao

Measurement-device-independent quantum key distribution (MDI-QKD) protocol has high practical value. Satellite-based links are useful to build long-distance quantum communication network. The model of satellite-based links for MDI-QKD was proposed but it lacks practicality. This work further analyzes the performance of it. First, MDI-QKD and satellite-based links model are introduced. Then considering the operation of the satellite the performance of their combination is studied under different weather conditions. The results may provide important references for combination of optical-fiber-based links on the ground and satellite-based links in space, which is helpful for large-scale quantum communication network.


Sign in / Sign up

Export Citation Format

Share Document