Observation of Nearly Monoenergetic High-Energy Electrons in the Inner Radiation Belt

1965 ◽  
Vol 14 (22) ◽  
pp. 885-887 ◽  
Author(s):  
W. L. Imhof ◽  
R. V. Smith
2021 ◽  
Author(s):  
Jinxing Li ◽  
Jacob Bortnik ◽  
Xin An ◽  
Wen Li ◽  
Vassilis Angelopoulos ◽  
...  

<p>Naturally occurring chorus emissions are a class of electromagnetic waves found in the space environments of the Earth and other magnetized planets. They play an essential role in accelerating high-energy electrons forming the hazardous radiation belt environment. Chorus typically occurs in two distinct frequency bands separated by a gap. The origin of this two-band structure remains a 50-year old question. Using measurements from NASA’s Van Allen Probes we report that banded chorus waves are commonly accompanied by two separate anisotropic electron components. We demonstrate, using numerical simulations, that the initially excited single-band chorus waves alter the electron distribution immediately via Landau resonance, and suppresses the electron anisotropy at medium energies. This naturally divides the electron anisotropy into a low and a high energy components which excite the upper-band and lower-band chorus waves, respectively. This mechanism may also apply to the generation of chorus waves in other magnetized planetary magnetospheres.</p>


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinxing Li ◽  
Jacob Bortnik ◽  
Xin An ◽  
Wen Li ◽  
Vassilis Angelopoulos ◽  
...  

Abstract Naturally occurring chorus emissions are a class of electromagnetic waves found in the space environments of the Earth and other magnetized planets. They play an essential role in accelerating high-energy electrons forming the hazardous radiation belt environment. Chorus typically occurs in two distinct frequency bands separated by a gap. The origin of this two-band structure remains a 50-year old question. Here we report, using NASA’s Van Allen Probe measurements, that banded chorus waves are commonly accompanied by two separate anisotropic electron components. Using numerical simulations, we show that the initially excited single-band chorus waves alter the electron distribution immediately via Landau resonance, and suppress the electron anisotropy at medium energies. This naturally divides the electron anisotropy into a low and a high energy components which excite the upper-band and lower-band chorus waves, respectively. This mechanism may also apply to the generation of chorus waves in other magnetized planetary magnetospheres.


1995 ◽  
Vol 57 (2) ◽  
pp. 201-204 ◽  
Author(s):  
I.M. Martin ◽  
A.A. Gusev ◽  
G.I. Pugacheva ◽  
A. Turtelli ◽  
Yu.V. Mineevt

Author(s):  
Honoka TODA ◽  
Wataru MIYAKE ◽  
Takefumi MITANI ◽  
Takeshi TAKASHIMA ◽  
Yoshizumi MIYOSHI ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 133
Author(s):  
Ji-Hee Lee ◽  
Geonhwa Jee ◽  
Young-Sil Kwak ◽  
Heejin Hwang ◽  
Annika Seppälä ◽  
...  

Energetic particle precipitation (EPP) is known to be an important source of chemical changes in the polar middle atmosphere in winter. Recent modeling studies further suggest that chemical changes induced by EPP can also cause dynamic changes in the middle atmosphere. In this study, we investigated the atmospheric responses to the precipitation of medium-to-high energy electrons (MEEs) over the period 2005–2013 using the Specific Dynamics Whole Atmosphere Community Climate Model (SD-WACCM). Our results show that the MEE precipitation significantly increases the amounts of NOx and HOx, resulting in mesospheric and stratospheric ozone losses by up to 60% and 25% respectively during polar winter. The MEE-induced ozone loss generally increases the temperature in the lower mesosphere but decreases the temperature in the upper mesosphere with large year-to-year variability, not only by radiative effects but also by adiabatic effects. The adiabatic effects by meridional circulation changes may be dominant for the mesospheric temperature changes. In particular, the meridional circulation changes occasionally act in opposite ways to vary the temperature in terms of height variations, especially at around the solar minimum period with low geomagnetic activity, which cancels out the temperature changes to make the average small in the polar mesosphere for the 9-year period.


Sign in / Sign up

Export Citation Format

Share Document