distinct frequency
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 20)

H-INDEX

20
(FIVE YEARS 4)

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1528
Author(s):  
Mustahseen M. Indaleeb ◽  
Sourav Banerjee

Simultaneous occurrence of Dirac-like cones at the center of the Brillouin zone (Г) at two different energy states is termed Dual-Dirac-like cones (DDC) in this article. The occurrence of DDC is a rare phenomenon. Thus, the generation of multiple Dirac-like cones at the center of the Brillouin zone is usually non-manipulative and poses a challenge to achieve through traditional accidental degeneracy. However, if predictively created, DDC will have multiple engineering applications with acoustics and vibration. Thus, the possibilities of creating DDC have been identified herein using a simple square periodic array of tunable square phononic crystals (PnCs) in air media. It was found that antisymmetric deaf bands may play critical roles in tracking the DDC. Hence, pivoting on the deaf bands at two different energy states, an optimized tuning parameter was found to achieve Dirac-like cones at two distinct frequency states, simultaneously. Orthogonal wave transport identified as key Dirac phenomena was achieved at two frequencies, herein. It was identified that beyond the Dirac-like cone, the Dirac phenomena remain dominant when a doubly degenerated state created by a top band with positive curvature and a near-flat deaf band are lifted from a bottom band with negative curvature. Utilizing a mechanism of rotating the PnCs near a fixed deaf band, frequencies are tracked to form the DDC, and orthogonal wave transport is demonstrated. Exploiting the dispersion behavior, unique acoustic phenomena, such as ballistic wave transmission, pseudo diffusion and acoustic cloaking are also demonstrated at the Dirac frequencies using numerical simulation. The proposed tunable acoustic PnCs will have important applications in acoustic and ultrasonic imaging, waveguiding and even acoustic computing.


2021 ◽  
Author(s):  
Ehab Hassan ◽  
David R Hatch ◽  
Michael Halfmoon ◽  
Max Curie ◽  
Michael Kotschenreuther ◽  
...  

Abstract Recent evidence points toward the microtearing mode (MTM) as an important fluctuation in the H-mode pedestal for anomalous electron heat transport. A study of the instabilities in the pedestal region carried out using gyrokinetic simulations to model an ELMy H-mode DIII-D discharge (USN configuration, 1.4 MA plasma current, and 3 MW heating power) is presented. The simulations produce MTMs, identified by predominantly electromagnetic heat flux, small particle flux, and a substantial degree of tearing parity. The magnetic spectrogram from Mirnov coils exhibits three distinct frequency bands---two narrow bands at lower frequency ($\sim$35-55 kHz and $\sim$70-105 kHz) and a broader band at higher frequency ($\sim$300-500 kHz). Global linear GENE simulations produce MTMs that are centered at the peak of the $\omega_*$ profile and correspond closely with the bands in the spectrogram. The three distinctive frequency bands can be understood from the basic physical mechanisms underlying the instabilities. For example (i) instability of certain toroidal mode numbers (n) is controlled by the alignment of their rational surfaces with the peak in the $\omega^*$ profile, and (ii) MTM instabilities in the lower n bands are the conventional collisional slab MTM, whereas the higher n band depends on curvature drive. While many features of the modes can be captured with the local approximation, a global treatment is necessary to quantitatively reproduce the detailed band gaps of the low-n fluctuations. Notably, the transport signatures of the MTM are consistent with careful edge modeling by SOLPS.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Leonardo Dalla Porta ◽  
Daniel M. Castro ◽  
Mauro Copelli ◽  
Pedro V. Carelli ◽  
Fernanda S. Matias

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1453
Author(s):  
Martin Bodner ◽  
Ugo A. Perego ◽  
J. Edgar Gomez ◽  
Ricardo M. Cerda-Flores ◽  
Nicola Rambaldi Migliore ◽  
...  

Mexico is a rich source for anthropological and population genetic studies with high diversity in ethnic and linguistic groups. The country witnessed the rise and fall of major civilizations, including the Maya and Aztec, but resulting from European colonization, the population landscape has dramatically changed. Today, the majority of Mexicans do not identify themselves as Indigenous but as admixed, and appear to have very little in common with their pre-Columbian predecessors. However, when the maternally inherited mitochondrial (mt)DNA is investigated in the modern Mexican population, this is not the case. Control region sequences of 2021 samples deriving from all over the country revealed an overwhelming Indigenous American legacy, with almost 90% of mtDNAs belonging to the four major pan-American haplogroups A2, B2, C1, and D1. This finding supports a very low European contribution to the Mexican gene pool by female colonizers and confirms the effectiveness of employing uniparental markers as a tool to reconstruct a country’s history. In addition, the distinct frequency and dispersal patterns of Indigenous American and West Eurasian clades highlight the benefit such large and country-wide databases provide for studying the impact of colonialism from a female perspective and population stratification. The importance of geographical database subsets not only for forensic application is clearly demonstrated.


Author(s):  
Christopher Mark O'Neill ◽  
Yannick Schubert ◽  
Moritz Sieber ◽  
Robert Martinuzzi ◽  
Chris Morton

Vortex induced vibrations (VIV) of a circular cylinder have been investigated experimentally using a cyberphysical apparatus with m∗ = 8, ζ = 0.005, and Re = 4000. This study considers the application of proper orthogonal decomposition (POD) and spectral POD (SPOD) analysis to the wake dynamics of the low-mass-ratio VIV of a circular cylinder in the lower branch at U∗ = 7.5. SPOD has been previously shown to better separate frequency-centered modal dynamics, compared to POD. Coherent POD and SPOD modes were compared and the newly separated third SPOD mode pair was found to have a periodicity characteristic of vortex shedding and a peak in the temporal coefficient spectra at St = f D/U∞ = 0.2248. The literature has identified that the wake dynamics within the lower branch are synchronized to the cylinder motion; however the present study suggests that some hidden dynamics persist at the Strouhal frequency. Low order models based on the first eight POD and SPOD modes were compared, and it was found that the filtering operation in SPOD removes the uncorrelated stochastic energy component of the POD modes while producing a comparable representation of the coherent deterministic part of the wake dynamics. Using SPOD to separate the distinct frequency-centered dynamics into unique, interpretable mode pairs will simplify future efforts to develop sparse dynamical models of the flow.


2021 ◽  
Vol 263 (4) ◽  
pp. 2327-2335
Author(s):  
Louis Krause ◽  
Stephan Töpken ◽  
Steven van de Par

The comfort during a flight on an aircraft is important for passengers. Like many other physical factors, vibrations of the airplane may negatively affect comfort. To understand the impact of vibration on comfort, it is important to know in which way the vibrations transmitted through the seat affects the perception of whole-body-vibrations. In this study, perception thresholds for vertical sinusoidal whole-body vibrations with frequencies between 20 Hz and 75 Hz were determined on a vibration platform with a typical economy class aircraft seat bench. Acceleration levels were recorded with accelerometers placed at the right rear seat rail and inside a seat cushion between the seat surface and the participant. The results show a distinct frequency dependency of the detection thresholds when measured at the seat rail. When taking the difference between the two measurement positions into account and describing the thresholds by the acceleration levels at the seat cushion, the determined perception thresholds are nearly frequency independent up to 50 Hz. This finding is in good agreement with literature data suggesting that the specific experimental setup does not play a big role in this frequency range. Differences above 50 Hz might be explained by the additional armrests in the present study.


2021 ◽  
Author(s):  
Gurpreet Bharti ◽  
Jagtar Singh Sivia

Abstract In this manuscript, a compact wideband antenna using a partial ground plane has been designed by the hybridization of Minkowski fractal curves on the hexagonal radiating patch. Further, the corners of this partial ground plane have been truncated and the Minkowski curves superimposed on each truncated corner and finally, the L – shaped stub has been employed to enhance the performance parameters of the antenna in terms of the number of frequency bands and impedance bandwidth. Different prototypes of an antenna have been compared and found that prototype with L – shaped stub and ground plane with truncated corners using Minkowski curve (proposed prototype) exhibits better antenna performance parameters. The proposed prototype of the antenna reveals the maximum bandwidth of 10.86GHz (140.10%) with four distinct frequency bands 4.4, 7.1, 10.8, 16.3GHz. Designed antenna has also been fabricated and tested for authentication of simulated results with measured results and found in reasonable agreement with each other. The proposed antenna uses a low-cost FR4 substrate with a compact overall size of 24×30×1.6mm3. Due to the wider bandwidth, stable radiation pattern, and gain at the desired frequency points, the proposed antenna can be used for different wireless applications.


2021 ◽  
Author(s):  
Jinxing Li ◽  
Jacob Bortnik ◽  
Xin An ◽  
Wen Li ◽  
Vassilis Angelopoulos ◽  
...  

<p>Naturally occurring chorus emissions are a class of electromagnetic waves found in the space environments of the Earth and other magnetized planets. They play an essential role in accelerating high-energy electrons forming the hazardous radiation belt environment. Chorus typically occurs in two distinct frequency bands separated by a gap. The origin of this two-band structure remains a 50-year old question. Using measurements from NASA’s Van Allen Probes we report that banded chorus waves are commonly accompanied by two separate anisotropic electron components. We demonstrate, using numerical simulations, that the initially excited single-band chorus waves alter the electron distribution immediately via Landau resonance, and suppresses the electron anisotropy at medium energies. This naturally divides the electron anisotropy into a low and a high energy components which excite the upper-band and lower-band chorus waves, respectively. This mechanism may also apply to the generation of chorus waves in other magnetized planetary magnetospheres.</p>


Author(s):  
Zeinab Khastkhodaei ◽  
Muthuraman Muthuraman ◽  
Jenq-Wei Yang ◽  
Sergiu Groppa ◽  
Heiko J. Luhmann

AbstractHigher cognitive processes and emotional regulation depend on densely interconnected telencephalic and limbic areas. Central structures of this cortico-limbic network are ventral hippocampus (vHC), medial prefrontal cortex (PFC), basolateral amygdala (BLA) and nucleus accumbens (NAC). Human and animal studies have revealed both anatomical and functional alterations in specific connections of this network in several psychiatric disorders. However, it is often not clear whether functional alterations within these densely interconnected brain areas are caused by modifications in the direct pathways, or alternatively through indirect interactions. We performed multi-site extracellular recordings of spontaneous activity in three different brain regions to study the functional connectivity in the BLA–NAC–PFC–vHC network of the lightly anesthetized mouse in vivo. We show that BLA, NAC, PFC and vHC are functionally connected in distinct frequency bands and determined the influence of a third brain region on this connectivity. In addition to describing mutual synchronicity, we determined the strength of functional connectivity for each region in the BLA–NAC–PFC–vHC network. We find a region-specificity in the strength of feedforward and feedback connections for each region in its interaction with other areas in the network. Our results provide insights into functional and directed connectivity in the cortico-limbic network of adult wild-type mice, which may be helpful to further elucidate the pathophysiological changes of this network in psychiatric disorders and to develop target-specific therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document