Photonucleon Total Cross Sections at Very High Energy

1970 ◽  
Vol 25 (9) ◽  
pp. 613-616 ◽  
Author(s):  
W. P. Hesse ◽  
D. O. Caldwell ◽  
V. B. Elings ◽  
R. J. Morrison ◽  
F. V. Murphy ◽  
...  
1970 ◽  
Vol 25 (13) ◽  
pp. 902-902 ◽  
Author(s):  
W. P. Hesse ◽  
D. O. Caldwell ◽  
V. B. Elings ◽  
R. J. Morrison ◽  
F. V. Murphy ◽  
...  

1970 ◽  
Vol 25 (14) ◽  
pp. 979-979 ◽  
Author(s):  
W. P. Hesse ◽  
D. O. Caldwell ◽  
V. B. Elings ◽  
R. J. Morrison ◽  
F. V. Murphy ◽  
...  

2017 ◽  
Vol 32 (31) ◽  
pp. 1730028 ◽  
Author(s):  
L. Stodolsky

Analysis of the data for proton and antiproton scattering leads to a simple picture for very high energy hadronic cross-sections. There is, asymptotically, a simple “black disc” with a smooth “edge”. The radius of the “disc” is expanding logarithmically with energy, while the “edge” is constant. These conclusions follow from extensive fits to accelerator and cosmic ray data, combined with the observation that a certain combination of elastic and total cross-sections allows extraction of the “edge”. An interesting feature of the results is that the “edge” is rather large compared to the “disc”. This explains the slow approach to “asymptopia” where the “disc” finally dominates.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850242 ◽  
Author(s):  
L. Stodolsky

The description of very high energy proton–proton cross-sections in terms of a “black disc” with an “edge” allows a simple generalization to highest energy proton–nucleus cross-sections. This results in a leading ln2W term and a ln W term whose coefficient depends linearly on the radius of the nucleus (W the c.m. energy). The necessary parameters are determined from the fits to p–p data. Since the coefficient of the ln W term is rather large, it is doubtful that the regime of ln2W dominance can be reached with available energies in accelerators or cosmic rays. However, the ln W term can be relevant for highest energy cosmic rays in the atmosphere, where a large increase for the cross-section on nitrogen is expected. Tests of the theory should be possible by studying the coefficient of ln W at p-nucleus colliders.


1974 ◽  
Vol 9 (5) ◽  
pp. 1135-1161 ◽  
Author(s):  
L. G. Ratner ◽  
R. J. Ellis ◽  
G. Vannini ◽  
B. A. Babcock ◽  
A. D. Krisch ◽  
...  

2008 ◽  
Vol 23 (33) ◽  
pp. 2847-2857 ◽  
Author(s):  
F. CARVALHO ◽  
F. O. DURÃES ◽  
V. P. GONÇALVES ◽  
F. S. NAVARRA

At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale Qs. In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to describe the high energy experimental data on [Formula: see text] total cross sections.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Dario Buttazzo ◽  
Roberto Franceschini ◽  
Andrea Wulzer

Abstract We illustrate the potential of a very high energy lepton collider (from 10 to 30 TeV center of mass energy) to explore new physics indirectly in the vector boson fusion double Higgs production process and in direct diboson production at high energy. Double Higgs production is found to be sensitive to the anomalous Higgs trilinear coupling at the percent level, and to the Higgs compositeness ξ parameter at the per mille or sub-per mille level thanks to the measurement of the cross-section in the di-Higgs high invariant mass tail. High energy diboson (and tri-boson) production is sensitive to Higgs-lepton contact interaction operators at a scale of several tens or hundred TeV, corresponding to a reach on the Higgs compositeness scale well above the one of any other future collider project currently under discussion. This result follows from the unique capability of the very high energy lepton collider to measure Electroweak cross-sections at 10 TeV energy or more, where the effect of new physics at even higher energy is amplified. The general lesson is that the standard path towards precision physics, based on measurements of high-statistics processes such as single and double Higgs production, is accompanied at the very high energy lepton collider by a second strategy based on measurements at the highest available energy.


1960 ◽  
Vol 15 (12) ◽  
pp. 1023-1030 ◽  
Author(s):  
H. Salecker

In this article we propose π-meson-electron scattering as a possibility for investigating the electromagnetic structure of the pion. This experiment requires very high energy, but not necessarily such a high accuracy as the extrapolation procedure of CHEW and Low. After a short discussion of the general properties of the electromagnetic formfactor of the π-meson, we calculate the π—e and the e—π scattering cross sections with form factor. With an energy of 25 GeV and a 10% experimental error we can probe the root mean square radius of the pion down to 0.8 10-13 cm, with 50 GeV down to 0.6·10-13 cm and with 100 GeV to 0.36·10-13 cm. The rms radius of the pion may be larger than previously assumed, because there exists the possibility of a fairly large π — π interaction. A complementary possibility for investigating the electromagnetic structure of the pion consists in electron-positron pair annihilation with the creation of a π± pair. This process will probe the form factor of the π-meson for timelike arguments.


2010 ◽  
Vol 25 (18n19) ◽  
pp. 3733-3740 ◽  
Author(s):  
S. I. SINEGOVSKY ◽  
A. A. KOCHANOV ◽  
T. S. SINEGOVSKAYA ◽  
A. MISAKI ◽  
N. TAKAHASHI

In the near future, the energy region above few hundreds of TeV may really be accessible for measurements of the atmospheric muon spectrum with IceCube array. Therefore, one expects that muon flux uncertainties above 50 TeV, related to a poor knowledge of charm production cross-sections and insufficiently examined primary spectra and composition, will be diminished. We give predictions for the very high-energy muon spectrum at sea level, obtained with the three hadronic interaction models, taking into account also the muon contribution due to decays of the charmed hadrons.


Sign in / Sign up

Export Citation Format

Share Document